Volume 16Issue 5
Sep. 2023
Turn off MathJax
Article Contents
FAN Zuo-wen, JIA Lian-xi, LI Zhao-yi, ZHOU Jing-jie, CONG Qing-yu, ZENG Xian-feng. Method for the simultaneous measurement of waveguide propagation loss and bending loss[J]. Chinese Optics, 2023, 16(5): 1177-1185. doi: 10.37188/CO.EN.2022-0027
Citation: FAN Zuo-wen, JIA Lian-xi, LI Zhao-yi, ZHOU Jing-jie, CONG Qing-yu, ZENG Xian-feng. Method for the simultaneous measurement of waveguide propagation loss and bending loss[J].Chinese Optics, 2023, 16(5): 1177-1185.doi:10.37188/CO.EN.2022-0027

Method for the simultaneous measurement of waveguide propagation loss and bending loss

doi:10.37188/CO.EN.2022-0027
Funds:Supported by the National Key Research and Development Program of China (No. 2018YFB2200500)
More Information
  • Author Bio:

    Fan Zuowen (1998—), male, from Taian, Shandong Province, obtained his bachelors degree from Shandong University of Technology in 2016, and is a postgraduate student in the Microelectronics Institute, Shanghai University. He is mainly engaged in silicon photonics. E-mail:fanzuowen@shu.edu.cn

    Jia Lianxi (1982—), male, from Zibo, Shandong Province, professor, obtained a bachelors degree from Shandong University in 2005, and a doctorate degree from the Institute of Semiconductors, Chinese Academy of Sciences in 2010. He is mainly engaged in silicon photonics. E-mail:jialx@mail.sim.ac.cn

  • Corresponding author:jialx@mail.sim.ac.cn
  • Received Date:27 Nov 2022
  • Rev Recd Date:30 Jan 2023
  • Available Online:12 Apr 2023
  • The propagation loss of a waveguide is a key indicator to evaluate the performance of an integrated optical platform. The commonly used cut-back method for measuring propagation loss requires the introduction of the spiral test structure. In order to remove bending loss, the bending radius is usually designed to be larger but this consequently has a larger footprint. In this paper, we suggested a method to simultaneously measure the propagation loss and bending loss of waveguides with a cut-back structure. According to simulations, the bending loss can be exponentially fitted with the bending radius, which can be further simplified as linear fitting between the natural logarithm of the bending loss and bending radius. A genetic algorithm was used to fit the insertion loss curve of the cut-back structure and the propagation losses and bending loss were calculated. With this method, we measured a cut-back structure of lithium niobate waveguide and got a propagation loss of 0.558 dB/cm and a bending loss of 0.698 dB/90° at a radius of 100 μm and wavelength of 1550 nm. Using this method, we can simultaneously measure waveguide propagation loss and bending loss while mitigating the footprint.

  • loading
  • [1]
    ARIZMENDI L. Photonic applications of lithium niobate crystals[J]. Physica Status Solidi (A), 2004, 201(2): 253-283. doi:10.1002/pssa.200303911
    [2]
    WEIS R S, GAYLORD T K. Lithium niobate: summary of physical properties and crystal structure[J]. Applied Physics A, 1985, 37(4): 191-203. doi:10.1007/BF00614817
    [3]
    WU R B, WANG M, XU J, et al.. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials, 2018, 8(11): 910. doi:10.3390/nano8110910
    [4]
    ZHU D, SHAO L B, YU M J, et al.. Integrated photonics on thin-film lithium niobate[J]. Advances in Optics and Photonics, 2021, 13(2): 242-352. doi:10.1364/AOP.411024
    [5]
    RABIEI P, GUNTER P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding[J]. Applied Physics Letters, 2004, 85(20): 4603-4605. doi:10.1063/1.1819527
    [6]
    POBERAJ G, HU H, SOHLER W, et al.. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser & Photonics Reviews, 2012, 6(4): 488-503.
    [7]
    LEVY M, RADOJEVIC A M. Single-crystal lithium niobate films by crystal ion slicing[M]//ALEXE M, GÖSELE U. Wafer Bonding: Applications and Technology. Berlin: Springer, 2004: 417-450.
    [8]
    ZHANG M, BUSCAINO B, WANG CH, et al.. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568(7752): 373-377. doi:10.1038/s41586-019-1008-7
    [9]
    XU M Y, HE M B, ZHANG H G, et al.. High-performance coherent optical modulators based on thin-film lithium niobate platform[J]. Nature Communications, 2020, 11(1): 3911. doi:10.1038/s41467-020-17806-0
    [10]
    WANG CH, ZHANG M, CHEN X, et al.. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104. doi:10.1038/s41586-018-0551-y
    [11]
    WANG CH, LANGROCK C, MARANDI A, et al.. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides[J]. Optica, 2018, 5(11): 1438-1441. doi:10.1364/OPTICA.5.001438
    [12]
    LIN J T, YAO N, HAO ZH ZH, et al.. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J]. Physical Review Letters, 2019, 122(17): 173903. doi:10.1103/PhysRevLett.122.173903
    [13]
    HE M B, XU M Y, REN Y X, et al.. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s −1and beyond[J]. Nature Photonics, 2019, 13(5): 359-364. doi:10.1038/s41566-019-0378-6
    [14]
    CAI L T, KONG R R, WANG Y W, et al.. Channel waveguides and y-junctions in x-cut single-crystal lithium niobate thin film[J]. Optics Express, 2015, 23(22): 29211-29221. doi:10.1364/OE.23.029211
    [15]
    CAI L T, WANG Y W, HU H. Low-loss waveguides in a single-crystal lithium niobate thin film[J]. Optics Letters, 2015, 40(13): 3013-3016. doi:10.1364/OL.40.003013
    [16]
    HU H, YANG J, GUI L, et al.. Lithium niobate-on-insulator (LNOI): status and perspectives[J]. Proceedings of SPIE, 2012, 8431: 84311D.
    [17]
    KRASNOKUTSKA I, TAMBASCO J L J, LI X J, et al.. Ultra-low loss photonic circuits in lithium niobate on insulator[J]. Optics Express, 2018, 26(2): 897-904. doi:10.1364/OE.26.000897
    [18]
    ULLIAC G, COURJAL N, CHONG H M H, et al.. Batch process for the fabrication of LiNbO 3photonic crystals using proton exchange followed by CHF 3reactive ion etching[J]. Optical Materials, 2008, 31(2): 196-200. doi:10.1016/j.optmat.2008.03.004
    [19]
    DONG P, QIAN W, LIAO SH R, et al.. Low loss shallow-ridge silicon waveguides[J]. Optics Express, 2010, 18(14): 14474-14479. doi:10.1364/OE.18.014474
    [20]
    GUTIERREZ A M, BRIMONT A, AAMER M, et al.. Method for measuring waveguide propagation losses by means of a Mach–Zehnder Interferometer structure[J]. Optics Communications, 2012, 285(6): 1144-1147. doi:10.1016/j.optcom.2011.11.064
    [21]
    TAEBI S, KHORASANINEJAD M, SAINI S S. Modified fabry-perot interferometric method for waveguide loss measurement[J]. Applied Optics, 2008, 47(35): 6625-6630. doi:10.1364/AO.47.006625
    [22]
    HE Y M, LI ZH S, LU D. A waveguide loss measurement method based on the reflected interferometric pattern of a Fabry-Perot cavity[J]. Proceedings of SPIE, 2018, 10535: 105351U.
    [23]
    HOLLAND J H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence[M]. Cambridge: The MIT Press, 1992.
    [24]
    ALONSO J M, ALVARRUIZ F, DESANTES J M, et al.. Combining neural networks and genetic algorithms to predict and reduce diesel engine emissions[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(1): 46-55. doi:10.1109/TEVC.2006.876364
    [25]
    VERMA R, LAKSHMINIARAYANAN P A. A case study on the application of a genetic algorithm for optimization of engine parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220(4): 471-479.
    [26]
    BAHADORI M, NIKDAST M, CHENG Q X, et al.. Universal design of waveguide bends in silicon-on-insulator photonics platform[J]. Journal of Lightwave Technology, 2019, 37(13): 3044-3054. doi:10.1109/JLT.2019.2909983
    [27]
    THYAGARAJAN K, SHENOY M R, GHATAK A K. Accurate numerical method for the calculation of bending loss in optical waveguides using a matrix approach[J]. Optics Letters, 1987, 12(4): 296-298. doi:10.1364/OL.12.000296
    [28]
    HAN ZH H, ZHANG P, BOZHEVOLNYI S I. Calculation of bending losses for highly confined modes of optical waveguides with transformation optics[J]. Optics Letters, 2013, 38(11): 1778-1780. doi:10.1364/OL.38.001778
    [29]
    STENGER V E, TONEY J, PONICK A, et al. Low loss and low vpi thin film lithium niobate on quartz electro-optic modulators[C]. 2017 European Conference on Optical Communication( ECOC), IEEE, 2017: 1-3.
    [30]
    LI X P, CHEN K X, HU ZH F. Low-loss bent channel waveguides in lithium niobate thin film by proton exchange and dry etching[J]. Optical Materials Express, 2018, 8(5): 1322-1327. doi:10.1364/OME.8.001322
    [31]
    REN T H, ZHANG M, WANG CH, et al.. An integrated low-voltage broadband lithium niobate phase modulator[J]. IEEE Photonics Technology Letters, 2019, 31(11): 889-892. doi:10.1109/LPT.2019.2911876
    [32]
    DING T T, ZHENG Y L, CHEN X F. On-chip solc-type polarization control and wavelength filtering utilizing periodically poled lithium niobate on insulator ridge waveguide[J]. Journal of Lightwave Technology, 2019, 37(4): 1296-1300. doi:10.1109/JLT.2019.2892317
    [33]
    VLASOV Y A, MCNAB S J. Losses in single-mode silicon-on-insulator strip waveguides and bends[J]. Optics Express, 2004, 12(8): 1622-1631. doi:10.1364/OPEX.12.001622
    [34]
    WON Y H, JAUSSAUD P C, CHARTIER G H. Three-prism loss measurements of optical waveguides[J]. Applied Physics Letters, 1980, 37(3): 269-271. doi:10.1063/1.91903
    [35]
    REGENER R, SOHLER W. Loss in low-finesse Ti: LiNbO 3optical waveguide resonators[J]. Applied Physics B, 1985, 36(3): 143-147.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)/Tables(3)

    Article views(190) PDF downloads(178) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map