Volume 16Issue 5
Sep. 2023
Turn off MathJax
Article Contents
YANG Jian-ye, WU Rong, ZHANG Hao-chen. Design of all-optical half-adder based on nonlinear effect and linear interference effect[J]. Chinese Optics, 2023, 16(5): 1186-1194. doi: 10.37188/CO.EN.2022-0029
Citation: YANG Jian-ye, WU Rong, ZHANG Hao-chen. Design of all-optical half-adder based on nonlinear effect and linear interference effect[J].Chinese Optics, 2023, 16(5): 1186-1194.doi:10.37188/CO.EN.2022-0029

Design of all-optical half-adder based on nonlinear effect and linear interference effect

doi:10.37188/CO.EN.2022-0029
Funds:Supported by Natural Science Foundation of Gansu Province (No. 21JR7RA289)
More Information
  • Author Bio:

    Yang Jian-ye (1999—), male, born in Zhouqu County, Gansu Province, postgraduate. Received a Bachelor of Engineering degree from Lanzhou Jiaotong University in June 2021. Mainly engaged in research on mode division multiplexing integrated devices and all optical logic devices. E-mail:1114332211@qq.com

  • Corresponding author:1114332211@qq.com
  • Received Date:04 Jan 2023
  • Rev Recd Date:22 Feb 2023
  • Available Online:17 Mar 2023
  • An all-optical half-adder is designed by combining the nonlinear effect and linear interference effect of photonic crystals. By dividing the light source into two parts equally, the half adder AND gate and XOR gate are designed separately. The nonlinear effect is used to realize the AND gate with high contrast, and the linear interference effect is used to realize the XOR logic, so that the overall response speed of the device is improved. In this design structure, the device only has threshold requirements for the signal light source power. When the signal power is greater than 51.4 mW/μm2, it has stable output and strong anti-interference ability. The designed contrast of the half adder carry output port is 20.69 dB, and the output port contrast is 20.13 dB. The data transfer rate is 0.75 Tbits/s and the occupied area is 623 μm2.

  • loading
  • [1]
    MEKIS A, MEIER M, DODABALAPUR A, et al. Lasing mechanism in two-dimensional photonic crystal lasers[J]. Applied Physics A, 1999, 69(1): 111-114. doi:10.1007/s003390050981
    [2]
    DUTTA N K, JAQUES J. Semiconductor optical amplifier based optical logic devices[J]. Proceedings of SPIE, 2005, 6014: 60140X. doi:10.1117/12.630739
    [3]
    YOSHIKUNI Y. Semiconductor optical devices[J]. IEEJ Transactions on Electronics, Information and Systems, 1993, 113(4): 231-237. doi:10.1541/ieejeiss1987.113.4_231
    [4]
    CHANDERKANTA, CHEN N K, KAUSHIK B K, et al. Implementation of reversible Peres gate using electro-optic effect inside lithium-niobate based Mach-Zehnder interferometers[J]. Optics & Laser Technology, 2019, 117: 28-37.
    [5]
    QIU P, WANG G L, LU J L, et al. Research of spontaneous emission enhancement from quantum dots in a photonic crystal micro cavity[J]. Advanced Materials Research, 2011, 321: 208-212. doi:10.4028/www.scientific.net/AMR.321.208
    [6]
    ZHAO Y X, VORA K H, VOM BÖGEL G, et al. Design and simulation of a photonic crystal resonator as a biosensor for point-of-care applications[J]. tm-Technisches Messen, 2020, 87(7-8): 470-476. doi:10.1515/teme-2019-0127
    [7]
    MIROUH F Z, LEBBAL M R, BOUCHEMAT M, et al. Transmission and Q-factor improvement in 2D square photonic crystal demultiplexer[J]. Journal of New Technology and Materials, 2019, 9(2): 22-27. doi:10.12816/0057366
    [8]
    ARAM M H, KHORASANI S. Efficient analysis of photonic crystal slabs[J]. Journal of Lasers, Optics & Photonics, 2014, 1(2): 1000111.
    [9]
    QIANG H X, JIANG L Y, JIA W, et al. Design of one-dimensional dielectric and magnetic photonic crystal filters with broad omnidirectional filtering band[J]. Optica Applicata, 2011, 41(1): 63-77.
    [10]
    LIU W, ZHANG L SH, ZHANG F. Performance analysis of three-wavelength multi-channel photonic crystal filters of different sizes[J]. Crystals, 2022, 12(1): 91. doi:10.3390/cryst12010091
    [11]
    LIU V, JIAO Y, MILLER D A B, et al. Design methodology for compact photonic-crystal-based wavelength division multiplexers[J]. Optics Letters, 2011, 36(4): 591-593. doi:10.1364/OL.36.000591
    [12]
    NEMOVA G, JIN X, CHEN L R, et al. Modeling and experimental characterization of a dual-wavelength Bi-doped fiber laser with cascaded cavities[J]. Journal of the Optical Society of America B, 2020, 37(5): 1453-1460. doi:10.1364/JOSAB.390847
    [13]
    NALLUSAMY N, ARZATE N, RAJA R V J, et al. Modeling nonlinear high-pressure sensors based on degenerate four-wave mixing in photonic crystal fibers[J]. Applied Optics, 2022, 61(10): 2591-2597. doi:10.1364/AO.449032
    [14]
    MEI CH, WU Y, YUAN J H, et al. Design of compact and broadband polarization beam splitters based on surface plasmonic resonance in photonic crystal fibers[J]. Micromachines, 2022, 13(10): 1663. doi:10.3390/mi13101663
    [15]
    ZHANG J J, SHI X D, ZHANG ZH J, et al. Ultra-compact, efficient and high-polarization-extinction-ratio polarization beam splitters based on photonic anisotropic metamaterials[J]. Optics Express, 2022, 30(1): 538-549. doi:10.1364/OE.447501
    [16]
    KINCAID P S, PORCELLI A, NEVES A A R, et al. Size-dependent optical forces on dielectric microspheres in hollow core photonic crystal fibers[J]. Optics Express, 2022, 30(14): 24407-24420. doi:10.1364/OE.458674
    [17]
    CHOUDHARY K, KUMAR S. Design of an optical OR gate using mach-zehnder interferometers[J]. Journal of Optical Communications, 2018, 39(2): 161-165. doi:10.1515/joc-2016-0131
    [18]
    SEIFOURI M, OLYAEE S, SARDARI M, et al. Ultra-fast and compact all-optical half adder using 2D photonic crystals[J]. IET Optoelectronics, 2019, 13(3): 139-143. doi:10.1049/iet-opt.2018.5130
    [19]
    ABDOLLAHI M, PARANDIN F. A novel structure for realization of an all-optical, one-bit half-adder based on 2D photonic crystals[J]. Journal of Computational Electronics, 2019, 18(4): 1416-1422. doi:10.1007/s10825-019-01392-6
    [20]
    PARANDIN F, MALMIR M R. Reconfigurable all optical half adder and optical XOR and AND logic gates based on 2D photonic crystals[J]. Optical and Quantum Electronics, 2020, 52(2): 56. doi:10.1007/s11082-019-2167-3
    [21]
    PARANDIN F, HEIDARI F, RAHIMI Z, et al. Two-dimensional photonic crystal biosensors: a review[J]. Optics & Laser Technology, 2021, 144: 107397.
    [22]
    ÇETINKAYA Ç, ÇOKDUYGULULAR E, KINACI B, et al. Highly improved light harvesting and photovoltaic performance in CdTe solar cell with functional designed 1D-photonic crystal via light management engineering[J]. Scientific Reports, 2022, 12(1): 11245. doi:10.1038/s41598-022-15078-w
    [23]
    ALAEI S, SEIFOURI M, BABAABBASI G, et al. Numerical investigation on self-heating effect in 1.3 µm quantum dot photonic crystal microstructure VCSELs[J]. The European Physical Journal Plus, 2022, 137(4): 515. doi:10.1140/epjp/s13360-022-02731-6
    [24]
    JIANG Y C, LIU S B, ZHANG H F, et al. Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals[J]. Optics Communications, 2015, 348: 90-94. doi:10.1016/j.optcom.2015.03.011
    [25]
    陈莹. 基于光子晶体自准直效应偏振无关光子器件的研究[D]. 南京: 南京邮电大学, 2020.

    CHEN Y. Study of polarization independent photonic devices based on self-collimation in phtonic crystal[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020. (in Chinese)
    [26]
    OLYAEE S, NAJAFGHOLINEZHAD S, BANAEI H A. Four-channel label-free photonic crystal biosensor using nanocavity resonators[J]. Photonic Sensors, 2013, 3(3): 231-236. doi:10.1007/s13320-013-0110-y
    [27]
    SEIF-DARGAHI H, ZAVVARI M, ALIPOUR-BANAEI H. Very compact photonic crystal resonant cavity for all optical filtering[J]. Journal of Theoretical and Applied Physics, 2014, 8(4): 183-188. doi:10.1007/s40094-014-0147-3
    [28]
    SANI M H, TABRIZI A A, SAGHAEI H, et al. An ultrafast all-optical half adder using nonlinear ring resonators in photonic crystal microstructure[J]. Optical and Quantum Electronics, 2020, 52(2): 107. doi:10.1007/s11082-020-2233-x
    [29]
    CHATTOPADHYAY T, GAYEN D K. Optical half and full adders using the nonlinear Mach–Zehnder interferometer[J]. Journal of Optics, 2021, 50(2): 314-321. doi:10.1007/s12596-021-00692-0
    [30]
    SAADI K, KASHANINIA A, SABBAGHI-NADOOSHAN R. All-optical half adder based on triangular lattice photonic crystals with uniform structural parameters[J]. Photonic Network Communications, 2022, 43(3): 204-211. doi:10.1007/s11107-022-00970-2
    [31]
    FAIRBANKS A J, DARR A M, GARNER A L. A review of nonlinear transmission line system design[J]. IEEE Access, 2020, 8: 148606-148621. doi:10.1109/ACCESS.2020.3015715
    [32]
    SALIMZADEH S, ALIPOUR-BANAEI H. A novel proposal for all optical 3 to 8 decoder based on nonlinear ring resonators[J]. Journal of Modern Optics, 2018, 65(17): 2017-2024. doi:10.1080/09500340.2018.1489077
    [33]
    DAGHOOGHI T, SOROOSH M, ANSARI-ASL K. A low-power all optical decoder based on photonic crystal nonlinear ring resonators[J]. Optik, 2018, 174: 400-408. doi:10.1016/j.ijleo.2018.08.090
    [34]
    DIOUF M, SALEM A B, CHERIF R, et al. Super-flat coherent supercontinuum source in As 38.8Se 61.2chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy[J]. Applied Optics, 2017, 56(2): 163-169. doi:10.1364/AO.56.000163
    [35]
    SAGHAEI H, HEIDARI V, EBNALI-HEIDARI M, et al. A systematic study of linear and nonlinear properties of photonic crystal fibers[J]. Optik, 2016, 127(24): 11938-11947. doi:10.1016/j.ijleo.2016.09.111
    [36]
    ALIPOUR-BANAEI H, SERAJMOHAMMADI S, MEHDIZADEH F. All optical NAND gate based on nonlinear photonic crystal ring resonators[J]. Optik, 2017, 130: 1214-1221. doi:10.1016/j.ijleo.2016.11.190
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)/Tables(2)

    Article views(109) PDF downloads(162) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map