Citation: | HAN Jing, GAO Yang, JIAO Wei-yan, FAN Guang-hua, GAO Ya-chen. Mid-infrared plasmon regulation based on graphene nanoribbons[J].Chinese Optics, 2020, 13(3): 627-636.doi:10.3788/CO.2019-0185 |
[1] |
YU N F, WANG Q J, KATS M A,
et al. Designer spoof surface plasmon structures collimate terahertz laser beams[J].
Nature Materials, 2010, 9(9): 730-735.
doi:10.1038/nmat2822
|
[2] |
GEIM A K, NOVOSELOV K S. The rise of graphene[J].
Nature Materials, 2007, 6(3): 183-191.
doi:10.1038/nmat1849
|
[3] |
GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J].
Nature Photonics, 2012, 6(11): 749-758.
doi:10.1038/nphoton.2012.262
|
[4] |
LIU P W, JIN ZH, KATSUKIS G,
et al. Layered and scrolled nanocomposites with aligned semi-infinite graphene inclusions at the platelet limit[J].
Science, 2016, 353(6297): 364-367.
doi:10.1126/science.aaf4362
|
[5] |
HAN S J, GARCIA A V, OIDA S,
et al. Graphene radio frequency receiver integrated circuit[J].
Nature Communications, 2014, 5: 3086.
doi:10.1038/ncomms4086
|
[6] |
REN L, ZHANG Q, YAO J,
et al. Terahertz and infrared spectroscopy of gated large-area graphene[J].
Nano Letters, 2012, 12(7): 3711-3715.
doi:10.1021/nl301496r
|
[7] |
FEI Z, RODIN A S, ANDREEV G O,
et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J].
Nature, 2012, 487(7405): 82-85.
doi:10.1038/nature11253
|
[8] |
MIAO X CH, TONGAY S, PETTERSON M K,
et al. High efficiency graphene solar cells by chemical doping[J].
Nano Letters, 2012, 12(6): 2745-2750.
doi:10.1021/nl204414u
|
[9] |
CAI X H, SUSHKOV A B, JADIDI M M,
et al. Plasmon-enhanced terahertz photodetection in graphene[J].
Nano Letters, 2015, 15(7): 4295-4302.
doi:10.1021/acs.nanolett.5b00137
|
[10] |
GAO W L, SHU J, REICHEL K,
et al. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures[J].
Nano Letters, 2014, 14(3): 1242-1248.
doi:10.1021/nl4041274
|
[11] |
TAVAKOL M R, RAHMANI B, KHAVASI A. Tunable polarization converter based on one-dimensional graphene metasurfaces[J].
Journal of the Optical Society of America B, 2018, 35(10): 2574-2581.
doi:10.1364/JOSAB.35.002574
|
[12] |
TAVAKOL M R, SABA A, JAFARGHOLI A,
et al. Terahertz spectrum splitting by a graphene-covered array of rectangular grooves[J].
Optics Letters, 2017, 42(23): 4808-4811.
doi:10.1364/OL.42.004808
|
[13] |
KIM S, JANG M S, BRAR V W,
et al. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays[J].
Nature Communications, 2016, 7: 12323.
doi:10.1038/ncomms12323
|
[14] |
FARHAT M, GUENNEAU S, BAĞCI H. Exciting graphene surface plasmon polaritons through light and sound interplay[J].
Physical Review Letters, 2013, 111(23): 237404.
doi:10.1103/PhysRevLett.111.237404
|
[15] |
GARCIA-POMAR J L, NIKITIN A Y, MARTIN-MORENO L. Scattering of graphene plasmons by defects in the graphene sheet[J].
ACS Nano, 2013, 7(6): 4988-4994.
doi:10.1021/nn400342v
|
[16] |
YAN H G, LI X S, CHANDRA B,
et al. Tunable infrared plasmonic devices using graphene/insulator stacks[J].
Nature Nanotechnology, 2012, 7(5): 330-334.
doi:10.1038/nnano.2012.59
|
[17] |
JIN ZH, SUN W, KE Y G,
et al. Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning[J].
Nature Communications, 2013, 4: 1663.
doi:10.1038/ncomms2690
|
[18] |
RODRIGO D, TITTL A, LIMAJ O,
et al. Double-layer graphene for enhanced tunable infrared plasmonics[J].
Light:
Science&
Applications, 2017, 6(6): e16277.
|
[19] |
HUANG L, HU G H, DENG C Y,
et al. Realization of mid-infrared broadband absorption in monolayer graphene based on strong coupling between graphene nanoribbons and metal tapered grooves[J].
Optics Express, 2018, 26(22): 29192-29202.
doi:10.1364/OE.26.029192
|
[20] |
ZHAO B, ZHANG ZH M. Strong plasmonic coupling between graphene ribbon array and metal gratings[J].
ACS Photonics, 2015, 2(11): 1611-1618.
doi:10.1021/acsphotonics.5b00410
|
[21] |
LI K, FITZGERALD J M, XIAO X F,
et al. Graphene plasmon cavities made with silicon carbide[J].
ACS Omega, 2017, 2(7): 3640-3646.
doi:10.1021/acsomega.7b00726
|
[22] |
FALKOVSKY L A. Optical properties of graphene[J].
Journal of Physics:
Conference Series, 2008, 129: 012004.
doi:10.1088/1742-6596/129/1/012004
|
[23] |
MAK K F, SFEIR M Y, WU Y,
et al. Measurement of the optical conductivity of graphene[J].
Physical Review Letters, 2008, 101(19): 196405.
doi:10.1103/PhysRevLett.101.196405
|
[24] |
DU L P, TANG D Y, YUAN X C. Edge-reflection phase directed plasmonic resonances on graphene nano-structures[J].
Optics Express, 2014, 22(19): 22689-22698.
doi:10.1364/OE.22.022689
|
[25] |
CHEN J N, NESTEROV M L, NIKITIN A Y,
et al. Strong plasmon reflection at nanometer-size gaps in monolayer graphene on SiC[J].
Nano Letters, 2013, 13(12): 6210-6215.
doi:10.1021/nl403622t
|
[26] |
LI Z Q, HENRIKSEN E A, JIANG Z,
et al. Dirac charge dynamics in graphene by infrared spectroscopy[J].
Nature Physics, 2008, 4(7): 532-535.
doi:10.1038/nphys989
|
[27] |
WANG F, ZHANG Y B, TIAN CH SH,
et al. Gate-variable optical transitions in graphene[J].
Science, 2008, 320(5873): 206-209.
doi:10.1126/science.1152793
|