Volume 13Issue 3
Jun. 2020
Turn off MathJax
Article Contents
GAO Shuai, LI Yuan, BAI Ting-zhu, ZHANG Yu-xiang, ZHENG Xiao-bing. Uncertainty analysis in cross-calibration and optimization calculation of calibration coefficients[J]. Chinese Optics, 2020, 13(3): 568-576. doi: 10.3788/CO.2019-0215
Citation: GAO Shuai, LI Yuan, BAI Ting-zhu, ZHANG Yu-xiang, ZHENG Xiao-bing. Uncertainty analysis in cross-calibration and optimization calculation of calibration coefficients[J].Chinese Optics, 2020, 13(3): 568-576.doi:10.3788/CO.2019-0215

Uncertainty analysis in cross-calibration and optimization calculation of calibration coefficients

doi:10.3788/CO.2019-0215
Funds:Supported by National Key R&D Program of China (No. 2018YFB0504601); National Natural Science Foundation of China (No. 41271373)
More Information
  • Corresponding author:liyuan@cma.gov.cn
  • Received Date:07 Nov 2019
  • Rev Recd Date:21 Nov 2019
  • Publish Date:01 Jun 2020
  • The general cross-calibration method uses the ordinary least square method to regress the calibration coefficient by data points selected after time, spatial, observation geometrics and spectral collocation. However, the ordinary least square algorithm would reduce the validity of the regressed result because of ignoring the differences in quality between each data point. An optimized method based on the calculation of uncertainty was proposed. This uncertainty analysis method was used to quantify the uncertainty of the radiation standard value for each data point, and their weight factors were calculated. The weighted least square method was used to regress the calibration coefficient. Using HYPERION as a radiance standard, the calibration coefficients of MODIS channels 1 to 7 were each regressed using the ordinary least squares method and the weighted least squares method. The regressed coefficients were compared with the official calibration coefficient. The results show that the calibration coefficients calculated using the weighted least squares method were closer to the official coefficients of MODIS channels 1, 2, 4, 5, 6, and 7. The maximum relative error reduced to 3%~5% and the average relative error decreased to 0.5%~1.5% compared with the ordinary least squares method, which indicates that the weighted least squares method proposed in this paper can further improve the calculation accuracy of cross-calibration.

  • loading
  • [1]
    CHANDER G, HEWISON T J, FOX N, et al. Overview of intercalibration of satellite instruments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1056-1080. doi:10.1109/TGRS.2012.2228654
    [2]
    LUKASHIN C, WIELICKI B A, YOUNG D F, et al. Uncertainty estimates for imager reference inter-calibration with CLARREO reflected solar spectrometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1425-1436. doi:10.1109/TGRS.2012.2233480
    [3]
    National Research Council. Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond[M]. Washington, DC, USA: National Academies Press, 2007.
    [4]
    CEOS, W M O, GSICS, et al.. SI-traceable space-based climate observing system workshop[R]. London, UK: NPL, 2019.
    [5]
    GORROÑO J, BANKS A C, FOX N P, et al. Radiometric inter-sensor cross-calibration uncertainty using a traceable high accuracy reference hyperspectral imager[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 393-417. doi:10.1016/j.isprsjprs.2017.07.002
    [6]
    ROITHMAYR C M, LUKASHIN C, SPETH P W, et al. CLARREO approach for reference intercalibration of reflected solar sensors: on-orbit data matching and sampling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6762-6774. doi:10.1109/TGRS.2014.2302397
    [7]
    王玉鹏, 胡秀清, 王红睿, 等. 可在轨溯源的太阳反射波段光学遥感仪器辐射定标基准传递链路[J]. 光学 精密工程,2015,23(7):1807-1812. doi:10.3788/OPE.20152307.1807

    WANG Y P, HU X Q, WANG H R, et al. Standard transfer chain for radiometric calibration of optical sensing instruments with traceability[J]. Optics and Precision Engineering, 2015, 23(7): 1807-1812. (in Chinese) doi:10.3788/OPE.20152307.1807
    [8]
    陈申玮, 徐娜, 戴铁, 等. 空间辐射基准传递不确定性的光谱敏感性分析[J]. 光学学报,2018,38(1):0128004. doi:10.3788/AOS201838.0128004

    CHEN SH W, XU N, DAI T, et al. Sensitivity of intercalibration uncertainty on spectral sampling of space-based radiance standard[J]. Acta Optica Sinica, 2018, 38(1): 0128004. (in Chinese) doi:10.3788/AOS201838.0128004
    [9]
    赵维宁, 胡秀清, 方伟, 等. 卫星光学仪器辐射交互定标方法的应用和发展[J]. 光学 精密工程,2015,23(7):1921-1931. doi:10.3788/OPE.20152307.1921

    ZHAO W N, HU X Q, FANG W, et al. Development and applications of intercalibration for satellite optical instruments[J]. Optics and Precision Engineering, 2015, 23(7): 1921-1931. (in Chinese) doi:10.3788/OPE.20152307.1921
    [10]
    XIONG X X, ANGAL A, BUTLER J, et al. Global space-based inter-calibration system reflective solar calibration reference: from Aqua MODIS to S-NPP VIIRS[J]. Proceedings of SPIE, 2016, 9881: 98811D.
    [11]
    徐文斌, 郑小兵, 易维宁. 基于超光谱成像仪Hyperion的交叉定标方法[J]. 光学学报,2013,33(5):0528002. doi:10.3788/AOS201333.0528002

    XU W B, ZHENG X B, YI W N. Cross-calibration method based on hyperspectral imager Hyperion[J]. Acta Optica Sinica, 2013, 33(5): 0528002. (in Chinese) doi:10.3788/AOS201333.0528002
    [12]
    HUNG K W, SIU W C. Improved image interpolation using bilateral filter for weighted least square estimation[C]. Proceedings of 2010 IEEE International Conference on Image Processing, IEEE, 2010.
    [13]
    PETRAKOS G, ARTELARIS P. European regional convergence revisited: a weighted least squares approach[J]. Growth and Change, 2009, 40(2): 314-331. doi:10.1111/j.1468-2257.2009.00477.x
    [14]
    USGS. EO-1 HYPERION L1GST product[EB/OL]. USGS. https://earthexplorer.usgs.gov/.[2019-03-24].
    [15]
    NASA. TERRA MODIS Level 1B Calibrated Radiances[EB/OL]. NASA EOSDIS LP DAAC. https://ladsweb.modaps.eosdis.nasa.gov/search/.
    [16]
    CHANDER G, HELDER D L, AARON D, et al. Assessment of spectral, misregistration, and spatial uncertainties inherent in the cross-calibration study[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1282-1296. doi:10.1109/TGRS.2012.2228008
    [17]
    JCGM. JCGM 101: 2008 Evaluation of measurement data – supplement 1 to the “guide to the expression of uncertainty in measurement” – propagation of distributions using a Monte Carlo method[S]. BIPM Joint Committee for Guides in Metrology, 2008.
    [18]
    XIONG X, CHE N, XIE Y, et al. Four-years of on-orbit spectral characterization results for Aqua MODIS reflective solar bands[J]. Proceedings of SPIE, 2006, 6361: 63610S. doi:10.1117/12.687163
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)/Tables(2)

    Article views(1761) PDF downloads(77) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map