Volume 12Issue 5
Oct. 2019
Turn off MathJax
Article Contents
LIU Hui-wen, YAO Dong, LIU Yi, ZHANG Hao. Mn2+-doped CsPbX3 (X=Cl, Br and I) perovskite nanocrystals and their applications[J]. Chinese Optics, 2019, 12(5): 933-951. doi: 10.3788/CO.20191205.0933
Citation: LIU Hui-wen, YAO Dong, LIU Yi, ZHANG Hao. Mn2+-doped CsPbX3(X=Cl, Br and I) perovskite nanocrystals and their applications[J].Chinese Optics, 2019, 12(5): 933-951.doi:10.3788/CO.20191205.0933

Mn2+-doped CsPbX3(X=Cl, Br and I) perovskite nanocrystals and their applications

doi:10.3788/CO.20191205.0933
Funds:

the National Key Research and Development Program of China2016YFB0401701

National Natural Science Foundation of China21773088

National Natural Science Foundation of China51425303

JLU Science and Technology Innovative Research Team2017TD-06

the Jilin Province Science and Technology Research20190103024JH

More Information
  • Author Bio:

    LIU Hui-wen (1993-), Ph.D.candidate, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun.Her research interests are on the synthesis of perovskite nanocrystals and their applications in LEDs.E-mail:liuhuiwenjlu@163.com

    ZHANG Hao (1976-), Professor, State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun.His research interests are on the synthesis and controllable self-assembly of photoelectric functional nanocrystals and polymer-based nanocomposites.E-mail:hao_zhang@jlu.edu.cn

  • Corresponding author:ZHANG Hao, E-mail:hao_zhang@jlu.edu.cn
  • Received Date:10 Apr 2019
  • Rev Recd Date:07 May 2019
  • Publish Date:01 Oct 2019
  • Colloidal Mn 2+doped CsPbX 3(X=Cl, Br, I) nanocrystals(NCs) are being explored extensively as alternative emitting materials, wherein highly efficient optical and optoelectronic processes can be achieved. Mn 2+doping in perovskite NCs also reveals several new fundamental aspects of doping and new dopant-induced optical properties through different methods of synthesis. Mn 2+doping exists in wide-band-gap perovskite hosts where the excitation energy is transferred to an Mn d-state, resulting in short-range tunable yellow-orange d-d emissions. Enormous efforts have been expended on understanding the doping process and designing highly efficient doped NCs. The unique electronic and fluorescent properties endow these Mn 2+doped perovskite NCs with various optoelectronic applications in light-emitting diodes(LEDs) and solar cells. Combining all these facts, this review focuses on the recent progress in synthesis methods, emission mechanism, and potential applications of Mn 2+doped CsPbX 3perovskite NCs and provides an outline for plausible future studies.

  • loading
  • [1]
    PAN J, QUAN L N, ZHAO Y B, et al.. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering[J]. Advanced Materials, 2016, 28(39):8718-8725. doi:10.1002/adma.201600784
    [2]
    LI X M, YU D J, CAO F, et al.. Healing all-inorganic perovskitefilms via recyclable dissolution recyrstallization for compact and smooth carrier channels of optoelectronic devices with high stability[J]. Advanced Functional Materials, 2016, 26(32):5903-5912. doi:10.1002/adfm.201601571
    [3]
    ZHANG X L, XU B, ZHANG J B, et al.. All-inorganic perovskite nanocrystals for high-efficiency light emitting diodes:dual-phase CsPbBr 3-CsPb 2Br 5composites[J]. Advanced Functional Materials, 2016, 26(25):4595-4600. doi:10.1002/adfm.201600958
    [4]
    NOZIK A J. Nanophotonics:making the most of photons[J]. Nature Nanotechnology, 2009, 4(9):548-549. doi:10.1038/nnano.2009.253
    [5]
    YOON H C, KANG H, LEE S, et al.. Study of perovskite QD down-converted LEDs and six-color white LEDs for future displays with excellent color performance[J]. ACS Applied Materials& Interfaces, 2016, 8(28):18189-18200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d62ee5f31802f1f554bd0ab4c556332c
    [6]
    ZHANG X J, WANG H C, TANG A C, et al.. Robust and stable narrow-band green emitter:an option for advanced wide-color-gamut backlight display[J]. Chemistry of Materials, 2016, 28(23):8493-8497. doi:10.1021/acs.chemmater.6b04107
    [7]
    ZHANG X Y, LIN H, HUANG H, et al.. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinate dionomer[J]. Nano Letters, 2016, 16(2):1415-1420. doi:10.1021/acs.nanolett.5b04959
    [8]
    DE ROO J, IBÁÑEZ M, GEIREGAT P, et al.. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals[J]. ACS Nano, 2016, 10(2):2071-2081. doi:10.1021/acsnano.5b06295
    [9]
    PARK Y S, GUO SH J, Makarov N S, et al.. Room temperature single-photon emission from individual perovskite quantum dots[J]. ACS Nano, 2015, 9(10):10386-10393. doi:10.1021/acsnano.5b04584
    [10]
    LI X M, WU Y, ZHANG SH L, et al.. CsPbX 3quantum dots for lighting and displays:room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes[J]. Advanced Functional Materials, 2016, 26(15):2435-2445. doi:10.1002/adfm.201600109
    [11]
    MEYNS M, PERÁLVAREZ M, HEUER-JUNGEMANN A, et al.. Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs[J]. ACS Applied Materials& Interfaces, 2016, 8(30):19579-19586. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8b7bf7a0c31ea260ea0dc34f56b8052f
    [12]
    WEI ZH H, PERUMAL A, SU R, et al..Solution-processed highly bright and durable cesium lead halide perovskite light-emitting diodes[J]. Nanoscale, 2016, 8(42):18021-18026. doi:10.1039/C6NR05330K
    [13]
    DAS ADHIKARIS, GURIA A K, PRADHAN N. Insights of doping and the photoluminescence properties of Mn-doped perovskite nanocrystals[J]. The Journal of Physical Chemistry Letters, 2019, 10(9):2250-2257. doi:10.1021/acs.jpclett.9b00182
    [14]
    VLASKIN V A, JANSSEN N, VAN RIJSSEL J, et al.. Tunable dual emission in doped semiconductor nanocrystals[J]. Nano Letters, 2010, 10(9):3670-3674. doi:10.1021/nl102135k
    [15]
    XIE R G, PENG X G. Synthesis of Cu-doped InP nanocrystals(d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters[J]. Journal of the American Chemical Society, 2009, 131(30):10645-10651. doi:10.1021/ja903558r
    [16]
    VLASKIN V A, BARROWS C J, ERICKSON C S, et al.. Nanocrystaldiffusion doping[J]. Journal of the American Chemical Society, 2013, 135(38):14380-14389. doi:10.1021/ja4072207
    [17]
    MAGANA D, PERERA S C, HARTER A G, et al.. Switching-on superparamagnetism in Mn/CdS equantum dots[J]. Journal of the American Chemical Society, 2006, 128(9):2931-2939. doi:10.1021/ja055785t
    [18]
    STOWELL C A, WIACEK R J, SAUNDERS A E, et al.. Synthesis and characterization of dilutemagnetic semiconductor manganese-doped indium arsenide nanocrystals[J]. Nano Letters, 2003, 3(10):1441-1447. doi:10.1021/nl034419+
    [19]
    NORRISD J, YAO N, CHARNOCK F T, et al.. High-quality manganese-doped ZnS nanocrystals[J]. Nano Letters, 2001, 1(1):3-7. doi:10.1021/nl005503h
    [20]
    PRADHAN N, GOORSKEY D, THESSING J, et al.. An alternative of CdSe nanocrystale mitters:pure and tunable impurity emissions in ZnSe nanocrystals[J]. Journal of the American Chemical Society, 2005, 127(50):17586-17587. doi:10.1021/ja055557z
    [21]
    PRADHAN N, BATTAGLIA D M, LIU Y CH, et al.. Efficient, stable, small, and water-soluble doped ZnSe nanocrystalemitters as non-cadmium biomedical labels[J]. Nano Letters, 2007, 7(2):312-317. doi:10.1021/nl062336y
    [22]
    SRIVASTAVA B B, JANA S, PRADHAN N. Doping Cu in semiconductor nanocrystals:some old and some new physicalinsights[J]. Journal of the American Chemical Society, 2011, 133(4):1007-1015. doi:10.1021/ja1089809
    [23]
    MANNA G, JANA S, BOSE R, et al.. Mn-doped multinary CIZS and AIZS nanocrystals[J]. The Journal of Physical Chemistry Letters, 2012, 3(18):2528-2534. doi:10.1021/jz300978r
    [24]
    ACHARYA S, SARKAR S, PRADHAN N. Material diffusion anddoping of Mn in wurtzite ZnSe nanorods[J]. The Journal of Physical Chemistry C, 2013, 117(11):6006-6012. doi:10.1021/jp400456t
    [25]
    KAMAT P V. Semiconductor nanocrystals:to dope or not todope[J]. The Journal of Physical Chemistry Letters, 2011, 2(21):2832-2833. doi:10.1021/jz201345y
    [26]
    SANTRA P K, KAMAT P V. Mn-doped quantum dot sensitized solar cells:a strategy to boost efficiency over 5%[J]. Journal of the American Chemical Society, 2012, 134(5):2508-2511. doi:10.1021/ja211224s
    [27]
    SARKAR S, GURIA A K, PRADHAN N. Influence of doping on semiconductor nanocrystals mediated charge transfer and photocatalytic organic reaction[J]. Chemical Communications, 2013, 49(54):6018-6020. doi:10.1039/c3cc41599f
    [28]
    PRADHAN N, SARMA D D. Advances in light-emitting doped semiconductor nanocrystals[J]. The Journal of Physical Chemistry Letters, 2011, 2(21):2818-2826. doi:10.1021/jz201132s
    [29]
    LIU W Y, LIN Q L, LI H B, et al.. Mn 2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content[J]. Journal of the American Chemical Society, 2016, 138(45):14954-14961. doi:10.1021/jacs.6b08085
    [30]
    PAROBEK D, ROMAN B J, DONG Y T, et al.. Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals[J]. Nano Letters, 2016, 16(12):7376-7380. doi:10.1021/acs.nanolett.6b02772
    [31]
    LIU H W, WU ZH N, SHAO J R, et al.. CsPb xMn 1-xCl 3perovskite quantum dots with high Mn substitution ratio[J]. ACS Nano, 2017, 11(2):2239-2247. doi:10.1021/acsnano.6b08747
    [32]
    GURIA A K, DUTTA S K, DAS ADHIKARI S, et al.. Doping Mn 2+in lead halide perovskite nanocrystals:successes and challenges[J]. ACS Energy Letters, 2017, 2(5):1014-1021. doi:10.1021/acsenergylett.7b00177
    [33]
    SWARNKAR A, RAVI V K, NAG A. Beyond colloidal cesium lead halide perovskite nanocrystals:analogous metal halides and doping[J]. ACS Energy Letters, 2017, 2(5):1089-1098. doi:10.1021/acsenergylett.7b00191
    [34]
    ZHOU Y, CHEN J, BAKR O M, et al.. Metal-doped lead halide perovskites:synthesis, properties, and optoelectronic applications[J]. Chemistry of Materials, 2018, 30(19):6589-6613. doi:10.1021/acs.chemmater.8b02989
    [35]
    CAI D, ZHU D H, YUAN X, et al.. Thermally stable luminescence of Mn 2+in Mn doped CsPbCl 3nanocrystals embedded in polydimethylsiloxane films[J]. Journal of Luminescence, 2018, 202:157-162. doi:10.1016/j.jlumin.2018.05.061
    [36]
    HE M L, CHENG Y Z, YUAN R R, et al.. Mn-doped cesium lead halide perovskite nanocrystals with dual-color emission for WLED[J]. Dyesand Pigments, 2018, 152:146-154. doi:10.1016/j.dyepig.2018.01.045
    [37]
    HE M L, CHENG Y Z, SHEN L L, et al.. Mn-doped CsPbCl 3perovskite quantum dots(PQDs) incorporated into silica/alumina particles used for WLEDs[J]. Applied Surface Science,2018, 448:400-406. doi:10.1016/j.apsusc.2018.04.098
    [38]
    HE T CH, LI J Z, REN C, et al.. Strong two-photon absorption of Mn-doped CsPbCl 3perovskite nanocrystals[J]. Applied Physics Letters, 2017, 111(21):211105. doi:10.1063/1.5008437
    [39]
    LIN CH CH, XU K Y, WANG D, et al.. Luminescent manganese-doped CsPbCl 3perovskite quantum dots[J]. Scientific Reports, 2017, 7:45906. doi:10.1038/srep45906
    [40]
    XU W, LI F M, LIN F Y, et al.. Synthesis of CsPbCl 3-Mn nanocrystals via cation exchange[J]. Advanced Optical Materials, 2017, 5(21):1700520. doi:10.1002/adom.201700520
    [41]
    XU K Y, MEIJERINK A. Tuning exciton-Mn 2+energy transfer in mixed halide perovskite nanocrystals[J]. Chemistry of Materials, 2018, 30(15):5346-5352. doi:10.1021/acs.chemmater.8b02157
    [42]
    YE SH, ZHAO M J, SONG J, et al.. Controllable emission bands and morphologies of high-quality CsPbX 3perovskite nanocrystals prepared in octane[J]. Nano Research, 2018, 11(9):4654-4663. doi:10.1007/s12274-018-2046-4
    [43]
    HU Q S, LI ZH, TAN ZH F, et al.. Rare earth ion-doped CsPbBr 3nanocrystals[J]. Advanced Optical Materials, 2018, 6(2):1700864. doi:10.1002/adom.201700864
    [44]
    HUANG G G, WANG CH L, XU SH H, et al.Postsynthetic doping of MnCl 2molecules into preformed CsPbBr 3perovskite nanocrystals via a halide exchange-driven cation exchange[J]. Advanced Materials, 2017, 29(29):1700095. doi:10.1002/adma.201700095
    [45]
    HE M L, CHENG Y Z, SHEN L L, et al.. Doping manganese into CsPb(Cl/Br) 3quantum dots glasses:dual-color emission and super thermal stability[J]. Journal of the American Ceramic Society, 2019, 102(3):1090-1100. doi:10.1111/jace.15945
    [46]
    WANG P CH, DONG B H, CUI ZH J, et al.. Synthesis and characterization of Mn-doped CsPb(Cl/Br) 3perovskite nanocrystals with controllable dual-color emission[J]. RSC Advances, 2018, 8(4):1940-1947. doi:10.1039/C7RA13306E
    [47]
    LI F, XIA ZH G, GONG Y, et al.. Optical properties of Mn 2+doped cesium lead halide perovskite nanocrystals via a cation-anion co-substitution exchange reaction[J]. Journal of Materials Chemistry C, 2017, 5(36):9281-9287. doi:10.1039/C7TC03575F
    [48]
    WU H, XU SH H, SHAO H B, et al.. Single component Mn-doped perovskite-related CsPb 2Cl xBr 5-xnanoplatelets with a record white light quantum yield of 49%:a new single layer color conversion material for light-emitting diodes[J]. Nanoscale, 2017, 9(43):16858-16863. doi:10.1039/C7NR06538H
    [49]
    ERWIN S C, ZU L J, HAFTEL M I, et al.. Doping semiconductor nanocrystals[J]. Nature, 2005, 436(7047):91-94. doi:10.1038/nature03832
    [50]
    ACHARYA S, SARMA D D, JANA N R, et al.. An alternate route to high-quality ZnSe and Mn-Doped ZnSe nanocrystals[J]. The Journal of Physical Chemistry Letters, 2010, 1(2):485-488. doi:10.1021/jz900291a
    [51]
    AMIT Y, LI Y Y, FRENKEL A I, et al.. From impurity doping to metallic growth in diffusion doping:properties and structure of silver-doped InAs nanocrystals[J]. ACS Nano, 2015, 9(11):10790-10800. doi:10.1021/acsnano.5b03044
    [52]
    NELSON H D, BRADSHAW L R, BARROWS C J, et al.. Picosecond dynamics of excitonic magnetic polarons in colloidal diffusion-doped Cd 1-xMn xSe quantum dots[J]. ACS Nano, 2015, 9(11):11177-11191. doi:10.1021/acsnano.5b04719
    [53]
    PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al.. Nanocrystals of cesium lead halide perovskites(CsPbX 3, X=Cl, Br, and I):novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6):3692-3696. doi:10.1021/nl5048779
    [54]
    ZHU J R, YANG X L, ZHU Y H, et al.. Room-temperature synthesis of Mn-doped cesium lead halide quantum dots with high Mn substitution ratio[J]. The Journal of Physical Chemistry Letters, 2017, 8(17):4167-4171. doi:10.1021/acs.jpclett.7b01820
    [55]
    MIR W J, MAHOR Y, LOHAR A, et al.. Postsynthesis doping of Mn and Yb into CsPbX 3(X=Cl, Br, or I) perovskite nanocrystals for down-conversion emission[J]. Chemistry of Materials, 2018, 30(22):8170-8178. doi:10.1021/acs.chemmater.8b03066
    [56]
    BAGHBANZADEH M, CARBONE L, COZZOLI P D, et al.. Microwave-assisted synthesis of colloidal inorganic nanocrystals[J]. Angewandte Chemie International Edition, 2011, 50(48):11312-11359. doi:10.1002/anie.201101274
    [57]
    LI L L, JI J, FEI R, et al.. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots[J]. Advanced Functional Materials, 2012, 22(14):2971-2979. doi:10.1002/adfm.201200166
    [58]
    HE Y, ZHONG Y L, PENG F, et al.. One-pot microwave synthesis of water-dispersible, ultra photo-and pH-stable, and highly fluorescent silicon quantum dots[J]. Journal of the American Chemical Society, 2011, 133(36):14192-14195. doi:10.1021/ja2048804
    [59]
    HE Y, LU H T, SAI L M, et al.. Microwave synthesis of water-dispersed CdTe/CdS/Zn Score-shell-shell quantum dots with excellent photostability and biocompatibility[J]. Advanced Materials, 2008, 20(18):3416-3421. doi:10.1002/adma.200701166
    [60]
    DING K L, LU H, ZHANG Y CH, et al.. Microwave synthesis of microstructured and nanostructured metal chalcogenides from elemental precursors in phosphonium ionic liquids[J]. Journal of the American Chemical Society, 2014, 136(44):15465-15468. doi:10.1021/ja508628q
    [61]
    LIU H W, WU ZH N, GAO H, et al.. One-step preparation of cesium lead halide CsPbX 3(X=Cl, Br, and I) perovskite nanocrystals by microwave irradiation[J]. ACS Applied Materials& Interfaces, 2017, 9(49):42919-42927. doi:10.1021/acsami.7b14677
    [62]
    LONG Z, REN H, SUN J H, et al.. High-throughput and tunable synthesis of colloidal CsPbX 3perovskite nanocrystals in a heterogeneous system by microwave irradiation[J]. Chemical Communications, 2017, 53(71):9914-9917. doi:10.1039/C7CC04862A
    [63]
    PAN Q, HU H CH, ZOU Y T, et al.. Microwave-assisted synthesis of high-quality "all-inorganic" CsPbX 3(X=Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes[J]. Journal of Materials Chemistry C, 2017, 5(42):10947-10954. doi:10.1039/C7TC03774K
    [64]
    LI Y X, HUANG H, XIONG Y, et al.. Revealing the formation mechanism of CsPbBr 3perovskite nanocrystals produced via a slowed-down microwave-assisted synthesis[J]. Angewandte Chemie International Edition, 2018, 57(20):5833-5837. doi:10.1002/anie.201713332
    [65]
    DENG D H, PAN X L, YU L, et al.. Toward N-doped graphene via solvothermal synthesis[J]. Chemistry of Materials, 2011, 23(5):1188-1193. doi:10.1021/cm102666r
    [66]
    LI X M, LIU Y L, SONG X F, et al.. Intercrossed carbon nanorings with pure surface states as low-cost and environment-friendly phosphors for white-light-emitting diodes[J]. Angewandte Chemie International Edition, 2015, 54(6):1759-1764. doi:10.1002/anie.201406836
    [67]
    YANG H G, LIU G, QIAO SH ZH, et al.. Solvothermal synthesis and photoreactivity of anatase TiO 2nanosheets with dominant {001} facets[J]. Journal of the American Chemical Society, 2009, 131(11):4078-4083. doi:10.1021/ja808790p
    [68]
    ZHONG D, CAI B, WANG X L, et al.. Synthesis of oriented TiO 2nanocones with fast charge transfer for perovskite solar cells[J]. Nano Energy, 2015, 11:409-418. doi:10.1016/j.nanoen.2014.11.014
    [69]
    CHEN D Q, FANG G L, CHEN X, et al.. Mn-doped CsPbCl 3perovskite nanocrystals:solvothermal synthesis, dual-color luminescence and improved stability[J]. Journal of Materials Chemistry C, 2018, 6(33):8990-8998. doi:10.1039/C8TC03139H
    [70]
    QIAO T, PAROBEK D, DONG Y T, et al.. Photoinduced Mn doping in cesium lead halide perovskite nanocrystals[J]. Nanoscale, 2019, 11(12):5247-5253. doi:10.1039/C8NR10439E
    [71]
    PAROBEK D, DONG Y T, QIAO T, et al.. Direct hot-injection synthesis of Mn-doped CsPbBr 3nanocrystals[J]. Chemistry of Materials, 2018, 30(9):2939-2944. doi:10.1021/acs.chemmater.8b00310
    [72]
    XU K Y, LIN CH CH, XIE X B, et al.. Efficient and stable luminescence from Mn 2+in core and core-isocrystalline shell CsPbCl 3perovskite nanocrystals[J]. Chemistry of Materials, 2017, 29(10):4265-4272. doi:10.1021/acs.chemmater.7b00345
    [73]
    IMRAN M, CALIGIURI V, WANG M J, et al.. Benzoyl halides as alternative precursors for the colloidal synthesis of lead-based halide perovskite nanocrystals[J]. Journal of the American Chemical Society, 2018, 140(7):2656-2664. doi:10.1021/jacs.7b13477
    [74]
    LI X M, CAO F, YU D J, et al.. All inorganic halide perovskites nano system:synthesis, structural features, optical properties and optoelectronic applications[J]. Small, 2017, 13(9):1603996. doi:10.1002/smll.201603996
    [75]
    ZHANG Y P, LIU J Y, WANG Z Y, et al.. Synthesis, properties, and optical applications of low-dimensional perovskites[J]. Chemical Communications, 2016, 52(94):13637-13655. doi:10.1039/C6CC06425F
    [76]
    MIR W J, JAGADEESWARARAO M, DAS S, et al.. Colloidal Mn-doped cesium lead halide perovskite nanoplatelets[J]. ACS Energy Letters, 2017, 2(3):537-543. doi:10.1021/acsenergylett.6b00741
    [77]
    BISWAS A, BAKTHAVATSALAM R, KUNDU J. Efficient exciton to dopant energy transfer in Mn 2+-doped(C 4H 9NH 3) 2-PbBr 4two-dimensional(2D) layered perovskites[J]. Chemistry of Materials, 2017, 29(18):7816-7825. doi:10.1021/acs.chemmater.7b02429
    [78]
    DAS ADHIKARI S, DUTTA A, DUTTA S K, et al.. Layered perovskites L 2(Pb 1-xMn x)Cl 4to Mn-doped CsPbCl 3perovskite platelets[J]. ACS Energy Letters, 2018, 3(6):1247-1253. doi:10.1021/acsenergylett.8b00653
    [79]
    DE A, MONDAL N, SAMANTA A. Luminescence tuning and exciton dynamics of Mn-doped CsPbCl 3nanocrystals[J]. Nanoscale, 2017, 9(43):16722-16727. doi:10.1039/C7NR06745C
    [80]
    SHEN ZH H, QIAO B, XU ZH, et al.. The luminescence properties of CsPb xM 1-xBr 3perovskite nanocrystals transformed from Cs 4PbBr 6mediated by various divalent bromide MBr 2salts[J]. Nanoscale, 2019, 11(9):4008-4014. doi:10.1039/C8NR09845J
    [81]
    SHAO H, BAI X, CUI H N, et al.. White light emission in Bi 3+/Mn 2+ion co-doped CsPbCl 3perovskite nanocrystals[J]. Nanoscale, 2018, 10(3):1023-1029. doi:10.1039/C7NR08136G
    [82]
    AKKERMAN Q A, MEGGIOLARO D, DANG ZH Y, et al.. Fluorescent alloy CsPb xMn 1-xI 3perovskite nanocrystals with high structural and optical stability[J]. ACS Energy Letters, 2017, 2(9):2183-2186. doi:10.1021/acsenergylett.7b00707
    [83]
    LIN F Y, LI F M, LAI ZH W, et al.. Mn -doped cesium lead chloride perovskite nanocrystals:demonstration of oxygen sensing capability based on luminescent dopants and host-dopant energy transfer[J]. ACS Applied Materials& Interfaces, 2018, 10(27):23335-23343. doi:10.1021/acsami.8b06329
    [84]
    YE SH, SUN J Y, HAN Y H, et al.. Confining Mn 2+-doped lead halide perovskite in Zeolite-Y as ultrastable orange-red phosphor composites for white light-emitting diodes[J]. ACS Applied Materials& Interfaces, 2018, 10(29):24656-24664. doi:10.1021/acsami.8b08342
    [85]
    ZOU SH H, LIU Y SH, LI J H, et al.. Stabilizing cesium lead halide perovskite lattice through Mn(Ⅱ) substitution for air-stable light-emitting diodes[J]. Journal of the American Chemical Society,2017, 139(33):11443-11450. doi:10.1021/jacs.7b04000
    [86]
    BAI D L, ZHANG J R, JIN ZH W, et al.. Interstitial Mn 2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI 2Br solar cells[J]. ACS Energy Letters, 2018, 3(4):970-978. doi:10.1021/acsenergylett.8b00270
    [87]
    WANG Q, ZHANG X SH, JIN ZH W, et al.. Energy-down-shift CsPbCl 3:Mn quantum dots for boosting the efficiency and stability of perovskite solar cells[J]. ACS Energy Letters, 2017, 2(7):1479-1486. doi:10.1021/acsenergylett.7b00375
    [88]
    LIANG J, LIU Z H, QIU L B, et al.. Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes[J]. Advanced Energy Materials, 2018, 8(20):1800504. doi:10.1002/aenm.201800504
    [89]
    LOCARDI F, CIRIGNANO M, BARANOV D, et al.. Colloidal synthesis of double perovskite Cs 2AgInCl 6and Mn-doped Cs 2AgInCl 6nanocrystals[J]. Journal of the American Chemical Society, 2018, 140(40):12989-12995. doi:10.1021/jacs.8b07983
    [90]
    NANDHA K N, NAG A. Synthesis and luminescence of Mn-doped Cs 2AgInCl 6double perovskites[J]. Chemical Communications, 2018, 54(41):5205-5208. doi:10.1039/C8CC01982G
    [91]
    TANG CH, CHEN CH Y, XU W W, et al.. Design of doped cesium lead halide perovskite as a photo-catalytic CO 2reduction catalyst[J]. Journal of Materials Chemistry A, 2019, 7(12):6911-6919. doi:10.1039/C9TA00550A
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)/Tables(3)

    Article views(2274) PDF downloads(166) Cited by()
    Proportional views

    /

    Return
    Return
      Baidu
      map