Volume 4 Issue 5
Oct.  2011
Turn off MathJax
Article Contents
ZHU Ming, GAO Wen, GUO Li-qiang. Application of compressed sensing theory in image processing[J]. Chinese Optics, 2011, 4(5): 441-447.
Citation: ZHU Ming, GAO Wen, GUO Li-qiang. Application of compressed sensing theory in image processing[J]. Chinese Optics, 2011, 4(5): 441-447.

Application of compressed sensing theory in image processing

  • Received Date: 21 Jul 2011
  • Rev Recd Date: 23 Aug 2011
  • Publish Date: 25 Oct 2011
  • Traditional Shannon sampling method leads to a large amount of image data, and massive data processing brings a great pressure to bear on the post-processing of image information. Compressed Sensing(CS) theory which can overcome the problem mentioned above is researched in this paper. It can reconstruct a large amount data by sampling small quantity data, and breakthroughs the restriction of Shannon sampling theory. This paper reviews the theory and key technique of CS, and introduces the application and development of CS in imaging system, image fusion, target recognition and tracking. It points out that the CS theory is an effective data processing, and more extensive applications will be come true with the development of the theory.

     

  • loading
  • [1] CANDÈS E,OMBERG J,TAO T. Robust uncertainty principles:exact signal recognition from highly incomplete frequency information[J]. IEEE Trans. Info. Theory,2006,52(2):489-509. [2] DONOHO D. Compressed sensing[J]. IEEE Trans. Info. Theory,2006,52(4):1289-1306. [3] CANSÈS E,TAO T. Near optimal signal recovery from random projections:universal encoding strategies?[J]. IEEE Trans. Info. Theory,2006,52(12):5406-5425. [4] ELAD M. Optimized projections for compressed sensing[J]. IEEE Trans. Signal Proc.,2007,55(12):5695-5702. [5] APPLEBAUM L,HOWARD S D,SEARLE S,et al.. Chirp sensing codes: deterministic compressed sensing measurements for fast recovery[J]. Appl. Comput, Harmon. Anal.,2009,26:283-290. [6] HERMAN M A,STROHMER T. General deviants: an analysis of perturbations in compressed sensing[J]. IEEE J. Selected Topics in Signal Proc.,2010,4(2):342-349. [7] MA J W. Compressed sensing by inverse scale space and curvelet thresholding[J]. Appl. Math. Comput.,2008,206:980-988. [8] CHRETIEN S. An alternating l1 approach to the compressed sensing problem[J]. IEEE Signal Proc. Lett.,2010,17(2):181-184. [9] CCANDÈS E,WAKIN M,BOYD S. Enhancing sparsity by reweighted l1 minimization[J]. J. Fourier Anal. Appl.,2008,14:877-905. [10] JIN J,GU Y,MEI S. A stochastic gradient approach on compressive sensing signal reconstruction based on adaptive filtering framework[J]. IEEE J. Selected Topics Signal Proc.,2010,4(2):409-420. [11] BLUMENSATH T,DAVIES M E. Iterative hard thresholding for compressed sensing[J]. Appl. Comput. Harmon. Anal.,2009,27:265-274. [12] RAUHNT H,SCHNASS K,VANDERGHEYNST P,et al.. Compressed sensing and redundant dictionaries[J]. IEEE Trans. Info. Theory,2008,54(5):2210-2219. [13] CANSÈS E J,ELDAR Y C,NEADELL D,et al.. Compressed sensing with coherent and redundant dictionaries[J]. Appl. Comput. Harmon. Anal.,2010,31(1):1-21. [14] DEYRE G. Best basis compressed sensing[J]. IEEE Trans. Signal Proc.,2010,58(5):2613-2622. [15] RAGINSKY M R,WILLETT R M,HARMANY I T,et al.. Compresed sensing performance bounds under poisson noise[J]. IEEE Trans. Signal Proc.,2010,58(8):3990-4002. [16] BARANIUK R G,CEVHER V,DUARTE M F,et al.. Model-based compressive sensing[J]. IEEE Trans. Info. Theory,2010,56(4):1982-2001. [17] HERMAN A,STROHMER T. High-resolution radar via compressed sensing[J]. IEEE Trans. Signal Proc.,2009,57(6):2275-2284. [18] EUDER H G. On compressive sensing applied to radar[J]. Signal Proc.,2010,90:1402-1414. [19] POTTER L C,ERTIN E,PARKER J T,et al.. Sparsity and compressed sensing in radar imaging[J]. Proc. IEEE,2010,98(6):1006-1020. [20] LUSTIG M,DONOHO D L,DANLY J M. Sparse MRI:the application of compressed sensing for rapid MR imaging[J]. Magn. Reson. Med.,2007,58:1182-1195. [21] LUSTIG M,DONOHO D L,SANTOS J M,et al.. Compressed sensing MRI[J]. IEEE Signal Proc Mag.,2008,3:72-82. [22] GAO D H,LIU D H,FENG Y Q,et al.. A robust image transmission scheme for wireless channels based on CS[J]. Lecture notes in Computer Science,2010,6216:334-341. [23] MAJUMDAR A,WARD K. Compressed sensing of color images[J]. Signal Proc.,2010,90:3122-3127. [24] HOLLAND D J,MALIOUTOV D M,BLAKE A,et al.. Reducing data acquisition times in phase-encoded velocity imaging using compressed sensing[J]. J. Magnetic Resonance,2010,203:236-246. [25] MAKALANOBIS A,MUISE R. Object specific image reconstruction using a compressive sensing architecture for application in surveillance systems[J]. IEEE Trans. Aerospace and Electronic Systems,2009,45(3):1167-1180. [26] GIACOBELLO D,CHRISTENSEN M G,MURTHI M,et al.. Retrieving sparse patterns using a compressed sensing framework:applications to speech coding based on sparse linear prediction[J]. IEEE Signal Proc. Lett.,2010,17(1):103-106. [27] MISHALI M,ELDAR Y C. Blind multiband signal reconstruction: compressed sensing for analog signals[J]. IEEE Trans. Signal Proc.,2009,57(3):993-1009. [28] BERGER C R,WANG ZH H,HUANG J ZH,et al.. Application of compressive sensing to sparse channel estimation[J]. IEEE. Commun. Mag.,2010,10:164-174. [29] CAND E J,ROMBERG J. Sparsity and incoherence in compressive sampling[J]. Inverse Problems,2007,23(3):969-985. [30] CAND S E,TAO T. Decoding by linear programming[J]. IEEE Trans. Info.Theory,2005,51(12):4203-4215. [31] HERRMANN F J,HENNENFENT G. Non-parametric seismic data recovery with curvelet frames[J]. Geophysical J. International,2008,173(1):233-248. [32] HERRMANN F J,WANG D L,HENNENFENT G,et al.. Curvelet based seismic data processing:a multiscale and nonlinear approach[J]. Geophysic,2008,73(1):A1. [33] DUARTE M F,DAVENPORT M A,TAKHAR D,et al.. Single-pixel imaging via compressive sampling[J]. IEEE Signal Proc. Mag.,2008,(3):83-91. [34] AKHAR D,LASKA J N,WAKIN M B,et al.. A new compressive imaging camera architecture using optical domain compression[J].SPIE,2006,6065:606509. [35] LUSTIG M,SANTOS J M,DONOHO D L,et al.. Kt SPARSE:High frame rate dynamic MRI exploiting spatiotemporal sparsity. Proceedings of the 14th Annual Meeting of ISMRM,Seattle,Washington,2006:2420 22443. [36] SMITH M I,HEATHER J P. A review of image fusion technology in 2005[J]. SPIE,2005,5782:29-45. [37] 蔡骋,张明,朱俊平. 基于压缩感知理论的杂草种子分类识别[J]. 中国科学:信息科学 ,2010,40(增):160-172. CAI CH,ZHANG M,ZHU J P. Weed seeds classification based on compressive sensing theory[J]. Science China Information Science,2010,40(s):160-172.(in Chinese) [38] LI H X,SHEN CH H. Robust real-time visual tracking with compressed sensing. Proc. of 2010 IEEE 17th International Conference on Image Processing,Hongkong,China,12-15 Sept.2010:45-48. [39] COSSALTER M,TAGLIASACCHI M,VALENZISF G. Privacy-enabled object tracking in video sequences using compressive sensing. Proc. of 2009 IEEE 6th International Conference on Advanced Video and Signal Based Surveillance,Genova,Italy,2-4 Sept,2009:436-441. [40] REDDY D,SANKARANARAYANAN A C,CEVHER V,et al.. Compressed sensing for multi-view tracking and 3-D voxel reconstruction. 2008,15th IEEE International Conference on Image Processing,San Diego,CA,2008:221-224.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(4778) PDF downloads(2504) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map