Design and analysis of kinematic lens positioning structure in lithographic projection objective
-
摘要:为了实现曝光工作过程中深紫外投影光刻物镜的动态稳定性,设计了一种能够消除温度和应变影响的光学元件运动学支撑结构,研究了如何利用该支撑结构消除温度变化和外界应变对光学元件面形的影响。首先,计算单个支座的径向柔度,并与有限元分析结果进行比较。然后,分析在不同温度载荷和外界应变工况下光学元件上、下表面面形的变化,并与三点胶粘固定支撑方式下的结果进行了比较。计算结果表明:通过理论公式推导的支座径向柔度与仿真结果的误差绝对值小于2.2%;温度升高0.1 ℃时光学元件上下表面面形RMS值小于0.36 nm;平面度公差5 m时面形RMS值小于0.05 nm。与三点胶粘固定方式相比,运动学支撑方式能够有效消除温度变化和外界应变对光学元件表面面形的影响。Abstract:In order to maintain the dynamic stability of a Deep Ultra-Violet(DUV) lithographic projection objective, a kinematic supporting structure which is able to eliminate the effects of temperature change and external strain is designed. The lens surface deformation due to temperature variation and external strain is studied. Firstly, the theoretical formula for the compliance of a supporting seat is derived, then the radial compliance of the supporting seat is calculated by using the derived formula and is compared with the results of the whole supporting seat from a Finite Element Analysis(FEA) analysis. The lens surface profile variation due to temperature change and external strain is analyzed and the supporting structure is compared with a 3-point glue supporting structure. The calculated results indicate that the absolute difference between the radial compliance obtained from the derived formula and the FEA simulation is within 2.2%, RMS values of the optical surfaces are less than 0.36 nm with a 0.1 ℃ temperature rise, and the RMS values of the optical surfaces are less than 0.05 nm for a manufacturing tolerance is 5 m. Compared with the 3-point glue suporting method, the kinematic supporting structure can eliminate the effect of temperature change and outside strain on the lens surface.
-
Key words:
- lithography/
- projection objective/
- kinematic supporting/
- compliance/
- surface form
-
[1] FUKAGAWA Y,SHINANOY J,NAKAMORIM M. Optimum adjustment for distortion in semiconductor lithography equipment[J].J. Advanced Mechanical Design Systems and Manufacturing,2008,2(3):378-382. [2] SHINANO Y,FUKAGAWA Y,TAKANOY Y,et al.. Lens system adjustment in semiconductor lithography equipment:optimization for lens groups rotation[J].J. Advanced Mechanical Design Systems and Manufacturing,2008,2(5):844-852. [3] YOSHINARA T,KOIZUMI R,TAKAHASHI K,et al.. Realization of very-small aberration projection lenses[J].SPIE,2000,4000:559-566. [4] 鲁亚飞,范大鹏,范世珣,等. 快速反射镜两轴柔性支撑设计[J]. 光学 精密工程,2010,18(12):257412582. LU Y F,FAN D P,FAN SH X,et al.. Design of two-axis elastic support for fast steering mirror[J].Opt. Precision Eng.,2010,18(12):2574-2582.(in Chinese) [5] 王忠素,翟岩,梅贵,等. 空间光学遥感器反射镜柔性支撑的设计[J]. 光学 精密工程,2010,18(8):1833-1841. WANG ZH S,ZHAI Y,MEI G,et al.. Design of flexible support structure of reflector in space remote sensor[J].Opt. Precision Eng.,2010,18(8):1833-1841.(in Chinese) [6] 沙巍,张星祥,陈长征,等. 圆形反射镜无隙支撑方法的应用[J]. 光学 精密工程,2010,18(10):2199-2205. SHA W,ZHANG X X,CHEN CH ZH,et al.. Application of zero clearance support method based on circle mirrors[J].Opt. Precision Eng.,2010,18(10):2199-2205.(in Chinese) [7] AHMAD A.Optomechanical Engineering Handbook[M]. Boca Raton:CRC Press,1999. [8] WATSON D C. Kinematic optical mounting assembly with flexures:US:6,922,293. 2005-07-26. [9] SPINALI. Kinematic optical mounting:US:6,400,516. 2002-06-04 [10] MATSUYAMA T,OHMURA Y,WILLIAMSON D M. The lithographic lens:its history and evolution[J].SPIE,2006,6154:615403. [11] 吴鹰飞,周兆英. 柔性铰链的设计计算[J]. 工程力学,2002,19(6):136-140. WU Y F,ZHOU ZH Y. Design of flexure hinges[J].Eng. Mechanics,2002,19(6):136-140.(in Chinese) [12] 朱仁胜,沈健,谢祖强,等. 双轴柔性铰链柔度的设计计算[J]. 合肥工业大学学报,2009,32(9):1370-1373. ZHU R S,SHEN J,XIE Z Q,et al.. Design calculation of double-axis flexure hinges[J].J. Hefei University of Technology(Natural Science),2009,32(9):1370-1373.(in Chinese) [13] YONG Y K,LU T F. Kinetostatic modeling of 3-RRR compliant micro-motion stages with flexure hinges[J].Mechanism and Machine Theory,2009,44(6):1156-1175. [14] 陈伟,丁亚林,惠守文,等. 碳化硅扫描反射镜支撑结构设计[J]. 中国光学,2012,5(2):161-166. CHEN W,DING Y L,HUI SH W,et al.. Design of kinematic mount for SiC scanning reflective mirror[J].Chinese Optics,2012,5(2):161-166.(in Chinese)
点击查看大图
计量
- 文章访问数:2740
- HTML全文浏览量:466
- PDF下载量:905
- 被引次数:0