Research progress of horizontal cavity surface emitting semiconductor lasers
-
摘要: 近年来,水平腔面发射半导体金宝搏188软件怎么用 器具有高功率、高光束质量及易封装集成等优良性能,已成为金宝搏188软件怎么用 器领域的研究热点。本文详细阐述了几种水平腔面发射半导体金宝搏188软件怎么用 器的结构设计、工作原理以及金宝搏188软件怎么用 输出特性,并对该金宝搏188软件怎么用 器国内外最新研究进展与发展现状进行了总结和论述。在此基础上,对该金宝搏188软件怎么用 器的研究方向和发展趋势进行了分析与展望。目前,水平腔面发射半导体金宝搏188软件怎么用 器的金宝搏188软件怎么用 输出功率可达瓦级,美国Alfalight公司引入曲线形光栅的单一发射器输出功率可达73 W。随着应用领域的不断拓展,中远红外波段水平腔面发射金宝搏188软件怎么用 器将成为未来的研究焦点。
-
关键词:
- 面发射 /
- 转向镜 /
- 二阶光栅 /
- 光子晶体 /
- 半导体金宝搏188软件怎么用 器
Abstract: In recent years, horizontal cavity surface emitting semiconductor lasers have become a hot research topic in the field of lasers due to its excellent properties such as high power, high beam quality, easy packaging, integration and so on. In this paper, we describe several types of horizontal cavity surface emitting semiconductor lasers and their working principle, structure design and features. Then, we summarize and review the present research and development of the proposed lasers at home and abroad, and on this basis, aiming at the research work for horizontal cavity surface-emitting semiconductor lasers and development trends, a further analysis and outlook are given. Currently, the output power of the horizontal cavity surface emitting semiconductor lasers has achieved watts level, and the output power of single transmitter producted by Alfalight company can reach up to 73 W with curved grating. With the expansion of application fields, far infrared band horizontal cavity surface emitting lasers will become focus in the future.-
Key words:
- surface emitting /
- steering mirror /
- second order grating /
- photonic crystal /
- semiconductor lasers
-
表 1 3种结构面发射金宝搏188软件怎么用 器性能
Table 1. Properties of three kinds surface emitting laser structures
-
[1] LEE H C, GAENSSLEN R E. Advances in Fingprint Technology[M]. Elsevier, 1991. [2] TANIYASU Y, KASU M, MAKIMOTO T. An aluminium nitridelight-emitting diode with a wavelength of 210 nanometres[J]. Nature, 2006, 441:325-328. doi: 10.1038/nature04760 [3] HIRAVAMA H, TSUKADA Y, MAEDA T, et al.. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multi quantum-barrier electronlocking layer[J]. Appl. Phys. Express, 2010, 3:031002. doi: 10.1143/APEX.3.031002 [4] KHAN M A, SHATALOV M, MARUSKA H P, et al.. Ⅲ-Nitride UV devices[J]. Jpn. J. Appl. Phys., 2005, 44(10):7191-7206. doi: 10.1143/JJAP.44.7191 [5] 王立军, 宁永强, 秦莉, 等.大功率半导体金宝搏188软件怎么用 器研究进展[J].发光学报, 2015, 36(1):1-19. http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201501002.htmWANG L J, NING Y Q, QIN L, et al.. Development of high power diode laser[J]. Chinese J. Luminescence, 2015, 36(1):1-19.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201501002.htm [6] 李珂, 石鹏, 张晓波, 等.双透镜系统光学整形元件的设计制作[J].中国金宝搏188软件怎么用 , 2010, 37(8):1972-1977. doi: 10.3788/CJLLI K, SHI P, ZHANG X B, et al.. Design and preparation of diffraction optical element in dual lens system[J]. Chinese J. Lasers, 2010, 37(8):1972-1977.(in Chinese) doi: 10.3788/CJL [7] 马浩统, 周朴, 王小林, 等.基于液晶空间光调制器的金宝搏188软件怎么用 光束近场整形[J].光学学报, 2010, 30(7):2032-2036. doi: 10.3788/AOSMA H T, ZHOU P, WANG X L, et al.. Near-field beam shaping based on liquid crystal spatial light modulator[J]. Acta Optica Scinica, 2010, 30(7):2032-2036.(in Chinese) doi: 10.3788/AOS [8] 陈凯, 李平雪, 陈檬, 等.高斯光束整形为平顶光束的非球面系统设计和面形参数分析[J].金宝搏188软件怎么用 与光电子学进展, 2011, 48(3):032201. http://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201103010.htmCHEN K, LI X P, CHEN M, et al.. Design and analysis of surface parameters of aspheric lenses system converting Gaussian beam to flattop beam[J]. Laser & Optoelectronics Progress, 2011, 48(3):032201.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201103010.htm [9] 金国藩, 严瑛白, 邬敏贤, 等.二元光学[M].北京:国防工业出版社, 1998.JIN G F, YAN Y B, WU M X, et al.. Binary Optics[M]. Bingjing:National Defense Industry Press, 1998.(in Chinese) [10] STEFAN H, BEN L, BORIS R, et al.. Single emitter based diode lasers with high brightness and narrow linewidth[J]. Proc. SPIE, 2011, 7918:79180M. https://www.researchgate.net/publication/252552659_Single_Emitter_Based_Diode_Lasers_with_High_Brightness_High_Power_and_Narrow_Linewidth [11] PAUL W, BERND K H, KARSTEN R, et al.. High-power, high-brightness and low-weight fiber coupled diode laser device[J]. SPIE, 2011, 7918:PSI79180O. https://www.researchgate.net/publication/253092491_High-power_high-brightness_and_low-weight_fiber_coupled_diode_laser_device [12] KITCHING J, KNAPPE S. A microwave frequency reference based in VCSEL driven dark line resonances in Cs vapor[J]. IEEE Transactions on Instrumentation and Measurement, 2000, 49(6):1313-1317. doi: 10.1109/19.893276 [13] MILLER M, GRANBHERR M. Improved output performance of high-power VCSELs[J]. IEEE J Sel Top Quantum Electron, 2001, 7:210-216. doi: 10.1109/2944.954132 [14] 田锟, 邹永刚, 马晓辉, 等.面发射分布反馈半导体金宝搏188软件怎么用 器[J].中国光学, 2016, 9(1):51-64. doi: 10.3788/co.TIAN K, ZOU Y G, MA X H, et al.. Surface emitting distributed feedback semiconductor lasers[J]. Chinese Optics, 2016, 9(1):51-64.(in Chinese) doi: 10.3788/co. [15] 戚晓东, 叶淑娟, 张楠, 等.面发射分布反馈半导体金宝搏188软件怎么用 器及光栅耦合半导体金宝搏188软件怎么用 器[J].中国光学与应用光学, 2010, 3(5):415-431. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201005003.htmQI X D, YE S J, ZHANG N, et al.. Surface-emitting distributed-feedback semiconductor lasers and grating-coupled laser diodes[J]. Chinese J. Optics and Applied Optics, 2010, 3(5):415-431. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGGA201005003.htm [16] TOBY J G, DON O, YAN X, et al.. Long wavelength surface-emitting distributed feedback (SE-DFB) laser for range finding applications[J]. SPIE, 2012, 8241:824113-4. https://www.researchgate.net/publication/258711644_Long_wavelength_Surface-Emitting_Distributed_Feedback_SE-DFB_laser_for_range_finding_applications [17] LIANG G Z, LIANG H K, ZHANG Y, et al.. Low divergence single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers[J]. Optics Express, 2013, 21(26):31878-31882. [18] CLEMENS S, ELVIS M, SANG I A, et al.. Grating duty-cycle induced enhancement of substrate emission from ring cavity quantum cascade lasers[J]. Applied Physics Letters, 2012, 100(19):191103-3. doi: 10.1063/1.4712127 [19] CLEMENS S, ROLF S, SANG I A, et al.. Linearly polarized light from substrate emitting ring cavity quantumcascade lasers[J]. Applied Physics Letters, 2013, 103(8):081101-3. doi: 10.1063/1.4819034 [20] SHOICHI K, TAKESHI K, YASUHIRO N, et al.. GaN-based surface-emitting laser with two-dimensional photonic crystal acting as distributed-feedback grating and optical cladding[J]. Applied Physics Letters, 2010, 97(25):251112-3. doi: 10.1063/1.3528352 [21] WU T T, CHEN C C, LU T C, et al.. Effects of lattice types on GaN-based photonic crystal surface-emitting lasers[J]. Quantum Electronics, 2015, 21(1):1700106. [22] ZHAO D Y, LIU S, YANG H J, et al.. Printed large-area single-mode photonic crystal bandedge surface-emitting lasers on silicon[J]. Scientific Reports, 2016, 6:18860. doi: 10.1038/srep18860 [23] OSOWSKI M L, LAMMERT R M. High Power Frequency Stabilized Surface Emitting Arrays[R]. Osowski-SSDLTR, 2005. [24] MOEHRLE M, KREISSL J, MOLZOW W D, et al.. Ultra-low threshold 1490 nm surface-emitting BH-DFB laser diode with integrated monitor photodiode[C]. 22nd International Conference on Indium Phosphide & Related Materials (IPRM), IEEE, 2010:TuA3-4. [25] LI S, BOTEZ D. Design for high-power single-mode operation from 2-D surface-emitting ROW-DFB lasers[J]. Photonics Technology Letters, 2005, 17(3):519-521. doi: 10.1109/LPT.2004.842388 [26] LI S, BOTEZ D. Analysis of 2-D Surface-Emitting ROW-DFB Semiconductor Power Single-Mode Operation[J]. J. Quantum Electronics, 2007, 43(8):655-667. doi: 10.1109/JQE.2007.900264 [27] HOFLING S, HEINRICH J, REITHMAIER J P, et al.. Widely tunable single-modequantum cascade lasers with two monolithically coupled Fabry-P rot cavities[J]. Appl. Phys. Lett., 2006, 89:241126. doi: 10.1063/1.2404933 [28] MARTIN S, FARHAN R. Analysis of Terahertz surface emitting quantum-cascade lasers[J]. J. Quantum Electronics, 2006, 42(3):257-265. doi: 10.1109/JQE.2005.863138 [29] LYAKH A, ZORY P, BOTEZ D, et al.. Substrate-emitting, distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 2007, 91:181116. doi: 10.1063/1.2803851 [30] MAISONS G, CARRAS M, GARCIA M, et al.. Substrate emitting index coupled quantum cascade lasers using biperiodic top metal grating[J]. Applied Physics Letters, 2009, 94(15):151104. doi: 10.1063/1.3113524 [31] SIGLER C, KIRCH J D, EARLES T, et al.. Design for high-power, single-lobe, grating-surface-emitting quantum cascade lasers enabled by plasmon-enhanced absorption of antisymmetric modes[J]. Applied Physics Letters, 2014, 1049(13):131108. https://www.researchgate.net/publication/261318558_Design_for_high-power_single-lobe_grating-surface-emitting_quantum_cascade_lasers_enabled_by_plasmon-enhanced_absorption_of_antisymmetric_modes [32] BOYLE C, SIGLER C, KIRCH J D, et al.. High-power, surface-emitting quantum cascade laser operating in a symmetric grating mode[J]. Applied Physics Letters, 2016, 108:121107. doi: 10.1063/1.4944846 [33] GUO W H, LU Q Y, LIU J Q, et al.. Analysis of surface emitting distributed-feedback quantum cascade laser based on a surface-plasmon waveguide[J]. J. Semiconductors, 2010, 31(11):114014. doi: 10.1088/1674-4926/31/11/114014 [34] GUO W H, LIU J Q, CHEN J Y, et al.. Single-mode surface-emitting, distributed feedback quantum-cascade lasers based on hybrid waveguide structure[J]. Chinese Optics Letters, 2011, 9(6):061404. doi: 10.3788/COL [35] 叶淑娟, 秦莉, 戚晓东, 等.二阶光栅分布反馈半导体金宝搏188软件怎么用 器的出光特性[J].中国金宝搏188软件怎么用 , 2010, 37(9):2371-2375. doi: 10.3788/CJLYE SH J, QIN L, QI X D, et al.. Emission characteristics of second-order distributed feedback semiconductor lasers[J]. Chinese J. Lasers, 2010, 37(9):2371-2375.(in Chinese) doi: 10.3788/CJL [36] CHEN Y Y, QIN L, JIA P, et al.. High power narrow far-field broad-stripe semiconductor lasers with second-order metal grating feedback[J]. Semiconductor Lasers and Applications, 2012, 8552:85520E. https://www.researchgate.net/publication/259130556_High_Power_Narrow_far-field_Broad-Stripe_Semiconductor_Lasers_with_Second-Order_Metal_Grating_Feedback [37] CHEN J Y, KIU J Q, GUO W H, et al.. High-power surface-emitting surface-plasmon-enhanced distributed feedback quantum cascade lasers[J]. Photonics Technology Letters, 2012, 24(11):972-974. doi: 10.1109/LPT.2012.2192724 [38] YAO D Y, LIU F Q, ZHANG J C, et al.. High power surface metal grating distributed feedback quantum cascade lasers emitting at λ~8.3μm[J]. Chinese Physics Letter, 2012, 29(9):94205. doi: 10.1088/0256-307X/29/9/094205 [39] YAO D Y, ZHANG J C, LIU F Q, et al.. Surface-emitting quantum cascade lasers operation in continuous-wave mode above 70℃ at λ-4.6μm[J]. Applied Physics Letters, 2013, 103:041121. doi: 10.1063/1.4816722 [40] TAN S Y, ZHAI T, LU D, et al.. Fabrication and characterization of high power 1064-nm DFB lasers[J]. Chinese Physics Letter, 2013, 30(11):114202. doi: 10.1088/0256-307X/30/11/114202 [41] ZHANG J C, LIU F Q, YAO D Y, et al.. Multi-wavelength surface emitting quantum cascade lasers based on equivalent phase shift[J]. J. Applied Physics, 2014, 115:033106. doi: 10.1063/1.4862649 [42] YAO D Y, ZHANG J C, LIU F Q, et al.. 1.8W room temperature pulsed operation substrate-emitting quantum cascade lasers[J]. IEEE Photonics Technology Letters, 2014, 26(4):323-325. doi: 10.1109/LPT.2013.2293495 [43] LIU Y H, ZHANG J C, JIA Z W, et al.. Top grating, surface-emitting DFB quantum cascade lasers in continuous-wave operation[J]. Photonics Technology Letters, 2015, 27(17):1829-1832. doi: 10.1109/LPT.2015.2443780 [44] TOBY J G, DON O, YAN X, et al.. High-power surface emitting distributed feedback (SE-DFB) lasers[J]. 2012 IEEE Photonics Society Summer Topical Meeting, IEEE, 2012:1-2. https://www.researchgate.net/publication/261036286_High-power_surface_emitting_distributed_feedback_SE-DFB_lasers [45] KANSKAR M, CAI J, KEDLAYA D, et al.. High brightness 975 nm surface-emitting distributed feedback laser & arrays[J]. SPIE, 2010, 7686:76860J. https://www.researchgate.net/publication/238554158_High_Brightness_975_nm_Surface-emitting_Distributed_Feedback_Laser_Arrays [46] TURNBULL G A, CARLETON A, BARLOW G F, et al.. Influence of grating characteristics on the operation of circular-grating distributed feedback polymer lasers[J]. J. Applied Physics, 2005, 98:023105. doi: 10.1063/1.1935131 [47] YU S F, LI X F. Design and analysis of terahertz surface-emitting distributed-feedback lasers with circular metal grating[C]. IEEE 3rd International Nanoelectronics Conference, IEEE, 2010:1-2. [48] LIANG G Z, LIANG H K, ZHANG Y, et al.. Single-mode surface-emitting concentric-circular-grating terahertz quantum cascade lasers[J]. Applied Physics Letters, 2013, 102:031119. doi: 10.1063/1.4789535 [49] ROLF S, CLEMENS S, TOBIAS Z, et al.. Grating-based far field modifications of ring quantum cascade lasers[J]. Optics Express, 2014, 22(13):15829-15836. doi: 10.1364/OE.22.015829 [50] MEIER M, MEKIS A, DODABALAPUR A, et al.. Laser action from two-dimensional distributed feedback in photonic crystal[J]. Applied Physics Letters, 1999, 74:7. doi: 10.1063/1.123116 [51] IMADA M, NODA S, CHUTINAN A, et al.. Coherent two-diamwnsional lasing action in surface-emitting laser with triandular-lattice photonic crystal structure[J]. Applied Physics Letters, 1999, 75:316. doi: 10.1063/1.124361 [52] NODA S, YOKOYAMA M, IMADA M, et al.. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design[J]. Science, 2001, 293:1123. doi: 10.1126/science.1061738 [53] IMADA M, CHUTINAN A, NODA S, et al.. Multidirectionally distributed feedback photonic crystal lasers[J]. Phys. Rev. B, 2002, 65:195306. doi: 10.1103/PhysRevB.65.195306 [54] VURGAFTMAN I, MEYER J R. Design optimization for high-brightness surface-emitting photonic-crystal distributed-feedback lasers[J]. IEEE J. Quantum Electron, 2003, 39:689-700. doi: 10.1109/JQE.2003.811943 [55] OHNISHI D, OKANO T, IMADA M, et al.. Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser[J]. Optical Express, 2004, 12:1562-1568. doi: 10.1364/OPEX.12.001562 [56] MIYAI E, SAKAI K, OKANO T, et al.. Photonics:Lasers producing tailored beams[J]. Nature, 2006, 441:946-948. doi: 10.1038/441946a [57] MATSUBARA H, YOSHIMOTO S, SAITO H, et al.. GaN photo-crystal surface-wmitting laser at blue-violet wavelengths[J]. Science, 2008, 319:445-447. doi: 10.1126/science.1150413 [58] KIM M, KIM C S, BEWLEY W, et al.. Surface-emitting photonic-crystal distributed-feedback laser for the midinfrared[J]. Applied Physics Letters, 2006, 88:191105. doi: 10.1063/1.2203234 [59] CHASSAGNEUX Y, COLOMBELLI R, MAINEULT W, et al.. Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions[J]. Nature, 2009, 457:174-178. doi: 10.1038/nature07636 [60] KUROSAKA Y, IWAHASHI S, LIANG Y, et al.. On-chip beam-steering photonic-crystal lasers[J]. Photonics, 2010, 4:447-450. doi: 10.1038/nphoton.2010.118 [61] XU G Y, VIRGINIE M, YANNICK C, et al.. Surface-emitting quantum cascade lasers with metallic photonic-crystal resonators[J]. Applied Physics Letters, 2009, 94:221101-3. doi: 10.1063/1.3143652 [62] LIANG Y, TSUYOSHI O, KYOKO K, et al.. Mode stability in photonic-crystal surface-emitting lasers with large κ1DL[J]. Applied Physics Letters, 2014, 104:021102-3. doi: 10.1063/1.4861708 -