留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型二维材料在固体 器中的应用研究进展

公爽,田金荣,李克轩,郭于鹤洋,许昌兴,宋晏蓉

downloadPDF
公爽, 田金荣, 李克轩, 郭于鹤洋, 许昌兴, 宋晏蓉. 新型二维材料在固体 器中的应用研究进展[J]. , 2018, 11(1): 18-30. doi: 10.3788/CO.20181101.0018
引用本文: 公爽, 田金荣, 李克轩, 郭于鹤洋, 许昌兴, 宋晏蓉. 新型二维材料在固体 器中的应用研究进展[J]. , 2018, 11(1): 18-30.doi:10.3788/CO.20181101.0018
GONG Shuang, TIAN Jin-rong, LI Ke-xuan, GUOYU He-yang, XU Chang-xing, SONG Yan-rong. Advances in new two-dimensional materials and its application in solid-state lasers[J]. Chinese Optics, 2018, 11(1): 18-30. doi: 10.3788/CO.20181101.0018
Citation: GONG Shuang, TIAN Jin-rong, LI Ke-xuan, GUOYU He-yang, XU Chang-xing, SONG Yan-rong. Advances in new two-dimensional materials and its application in solid-state lasers[J].Chinese Optics, 2018, 11(1): 18-30.doi:10.3788/CO.20181101.0018

新型二维材料在固体 器中的应用研究进展

doi:10.3788/CO.20181101.0018
基金项目:

国家自然科学基金项目61575011

北京工业大学基础研究基金项目X3006111201501

详细信息
    作者简介:

    公爽(1994—), 女, 山东临沂人, 硕士研究生, 主要从事固体 器等方面的研究。E-mail:gongshuang@emails.bjut.edu.cn

    田金荣(1975—),男,山东德州人,博士,副教授,硕士生导师,主要从事全固态 技术和飞秒 技术等方面的研究。E-mail:jrtian@bjut.edu.cn

  • 中图分类号:TN248.1

Advances in new two-dimensional materials and its application in solid-state lasers

Funds:

National Natural Science Foundation of China61575011

Basic Research Foundation of Beijing University of TechnologyX3006111201501

More Information
  • 摘要:本文主要介绍了二维可饱和吸收体材料在固体 器中的应用与研究进展。简要介绍了新型二维材料的性质和优点。以石墨烯、拓扑绝缘体、过渡金属硫化物和黑磷等新型二维材料为例分析了它们在固体 器中实现调Q或锁模的过程,展示了二维材料在脉冲固体 研究中的重要应用前景。二维材料与固体 器的结合,可进一步推进二维材料的研究,有望开发出大量新型固体 器件并且作为基础光源应用于多个领域,推动相关领域的发展。

  • 图 1石墨烯锁模Nd:YAG 器示意图[20]

    Figure 1.Schematic of the mode-locked Nd: YAG laser with graphene[20]

    图 2石墨烯锁模Cr:ZnS 器[30]

    Figure 2.Schematic of the mode-locked Cr:ZnS laser with graphene[30]

    图 3石墨烯锁模Cr:LiSAF 器[43]

    Figure 3.Schematic of the mode-locked Cr:LiSAF laser with graphene[43]

    图 4Bi2Se3调Q的Er:YAG 器[46]

    Figure 4.Schematic of the Q-switched Er:YAG laser with Bi2Se3[46]

    图 5MoS2为可饱和吸收体的Nd:YAlO3Q[58]

    Figure 5.Schematic ofQ-switched Nd:YAlO3laser with MoS2as saturable absorber[58]

    图 6WS2辅助锁模飞秒固体 器示意图[71]

    Figure 6.Schematic of the mode-locked Yb:YAG laser with WS2[71]

    图 7黑磷锁模Nd:YVO4 器实验装置[75]

    Figure 7.Schematic of the mode-locked Nd: YVO4laser with black phosphorus[75]

  • [1] ZAYHOWSKI J. Q-switched microchip lasers find real-world application[J]. Laser Focus World, 1999, 35(8):129-136.https://www.ll.mit.edu/.../pdf/vol03_no3/3.3.6.microchiplaser.pdf
    [2] WILLIAMS J A, FRENCH P M, TAYLOR J R, et al.. Passive mode locking of a cw energy-transfer dye laser operating in the infrared near 800 nm[J]. Opt. Lett., 1988, 13(10):811-813.doi:10.1364/OL.13.000811
    [3] 朱启海, 赵长明, 张逸辰, 等. 电池技术进展[J].光学 精密工程, 2016, 24(10):316-322.http://d.g.wanfangdata.com.cn/Periodical_kjxx-xsb200829046.aspx

    ZHU Q H, ZHAO CH M, ZHANG Y CH, et al. Development of laser cell technology[J]. Optics and Precision Engineering, 2016, 24(10):316-322.(in Chinese)http://d.g.wanfangdata.com.cn/Periodical_kjxx-xsb200829046.aspx
    [4] 曾飞, 高世杰, 伞晓刚, 张鑫, 等. 机载 通信系统发展现状与趋势[J]. 中国光学, 2016, 9(1): 65-73.http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgga201601009&dbname=CJFD&dbcode=CJFQ

    ZENG F, GAO SH J, SAN X G, et al. . Development status and trend of airborne laser communication terminals[J].Chinese Optics, 2016, 9(1): 65-73. (in Chinese)http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zgga201601009&dbname=CJFD&dbcode=CJFQ
    [5] KELLER U, MILLER D A, BOYD G D, et al.. Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers:an antiresonant semiconductor Fabry-Perot saturable absorber[J]. Opt. Lett., 1992, 17(7):505-507.doi:10.1364/OL.17.000505
    [6] SCHMIDT W, FER S C H, et al.. Self-mode-locking of dye-lasers with saturated absorbers[J]. Phys. Lett. A, 1968, 26(11):558-559.doi:10.1016/0375-9601(68)90546-X
    [7] SARUKUDA N, ISHIDA Y, YANAGAWA T, et al.. All solid state CW passively mode locked Ti:sapphire laser using a colored glass filter[J]. Appl. Phys. Lett., 1990, 57(3):229-230.doi:10.1063/1.103724
    [8] JABCZYN J K, AGNESI A, GUANDALINI A, et al.. Application of V3+: YAG crystals for Q-switching and mode-locking of 1.3-μm diode-pumped neodymium lasers[J]. Opt. Eng., 2001, 40(12):2802-2811.doi:10.1117/1.1418716
    [9] KELLER U, WEINGARTEN K J, KÄRTNER F X, et al.. Semiconductor saturable absorber mirrors(SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. IEEE J. Sel. Top. Quantum Electron., 1996, 2(3):435-453.doi:10.1109/2944.571743
    [10] SET S Y, YAGUCHI H, TANAKA Y, et al.. Laser mode locking using a saturable absorber incorporating carbon nanotubes[J]. J. Lightwave Technol., 2004, 22(1):51.doi:10.1109/JLT.2003.822205
    [11] RSCHIBLI T, MINOSHIMA K, KATAURA H, et al.. Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes[J]. Opt. Express, 2005, 13(20):8025-8031.doi:10.1364/OPEX.13.008025
    [12] SCHMIDT A, RIVIER S, STEINMEYER G, et al.. Passive mode locking of Yb: KLuW using a single-walled carbon nanotube saturable absorber[J]. Opt. Lett., 2008, 33(7):729-731.doi:10.1364/OL.33.000729
    [13] CHO W, YIM J, CHOI S, et al.. Boosting the nonlinear optical response of carbon nanotube saturable absorbers for broadband mode-locking of bulk lasers[J]. Adv. Funct. Mater., 2010, 20(12):1937-1943.doi:10.1002/adfm.v20:12
    [14] WANG F, ROZHIN A G, SCARDACI V, et al.. Wideband-tuneable nanotube mode-locked fibre laser[J]. Nat. Nanotechnol., 2008, 3(12):738-742.doi:10.1038/nnano.2008.312
    [15] GEIM K, NOVOSELOV K S, et al.. The rise of graphene[J]. Nat. Materials, 2007, 6:183-191.doi:10.1038/nmat1849
    [16] CASTRO NETO A H, GUINEA F, PERES N M R, et al.. The electronic properties of grapheme[J]. Rev. Mod. Phys., 2009, 81(1):109-162.doi:10.1103/RevModPhys.81.109
    [17] BREUSING M, ROPERS C, ELSAESSER T, et al.. Ultrafast carrier dynamics in graphite[J]. Phys. Rev. Lett., 2009, 102(8):086809.doi:10.1103/PhysRevLett.102.086809
    [18] BONACCORSO F, SUN Z, HASAN T. Graphene photonics and optoelectronics[J]. Nat. Photonics, 2010, 4(9):611-22.doi:10.1038/nphoton.2010.186
    [19] ZHANG H, TANG D Y, ZHAO L M, et al.. Large energy mode locking of an erbium-doped fiber laser with atomic layer graphene[J]. Opt. Express, 2009, 17(20):17630-17635.doi:10.1364/OE.17.017630
    [20] TAN W D, SU C Y, KNIZE R J, et al.. Mode locking of ceramic Nd: yttrium aluminum garnet with graphene as a saturable absorber[J]. Appl. Phys. Lett., 2010, 96(3):031106.doi:10.1063/1.3292018
    [21] CHO W B, KIM J W, LEE H W, et al.. High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm[J]. Opt. Lett., 2011, 36(20):4089-4091.doi:10.1364/OL.36.004089
    [22] HERNANDEZ Y, NICOLOSI V, LOTYA M, et al.. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nat. Nanotechnol., 2008, 3(9):563.doi:10.1038/nnano.2008.215
    [23] BOURLINOS A B, GEOGALILAS V, ZBORIL R, et al.. Pyrolytic formation and photoluminescence properties of a new layered carbonaceous material with graphite oxide-mimicking characteristics[J]. Carbon, 2009, 47(2):1841.https://www.sciencedirect.com/science/article/pii/S0008622308005873
    [24] XU J L, LI X L, WU Y Z, et al.. Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser[J]. Opt. Lett., 2011, 36(10):1948-1950.doi:10.1364/OL.36.001948
    [25] XU J L, LI X L, HAO X P, et al.. Performance of large-area few-layer graphene saturable absorber in femtosecond bulk laser[J]. Appl. Phys. Lett., 2011, 99(26):261107.doi:10.1063/1.3672213
    [26] XU J L, LI X L, HE J L, et al.. Efficient graphene Q switching and mode locking of 1.34 μm neodymium lasers[J]. Opt. Lett., 2012, 37(13):2652-2654.doi:10.1364/OL.37.002652
    [27] BAEK I H, LEE H W, BAE S K, et al.. Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber[J]. Appl. Phys. Express, 2012, 5(3):032701.doi:10.1143/APEX.5.032701
    [28] KIM J W, CHOI S Y, JUNG B H, et al.. Applicability of graphene flakes as saturable absorber for bulk laser mode-locking[J]. Appl. Phys. Express, 2012, 6(6):032704.https://www.researchgate.net/publication/258748689_Applicability_of_Graphene_Flakes_as_Saturable_Absorber_for_Bulk_Laser_Mode-Locking
    [29] XU S C, MAN B Y, JIANG S Z, et al.. Watt-level passively Q-switched mode-locked YVO4/Nd: YVO4laser operating at 1.06 μm using graphene as a saturable absorber[J]. Opt. Laser Technol., 2014, 56(3):393-397.https://www.sciencedirect.com/science/article/pii/S0030399214003004
    [30] TOLSTIK N, SOROKIN E, SOROKINA I T. Graphene mode-locked Cr: ZnS laser with 41 fs pulse duration[J]. Opt. Express, 2014, 22(5):5564-5571.doi:10.1364/OE.22.005564
    [31] TOLSTIK N, POSPISCHIL A, SOROKIN E, et al.. Graphene mode-locked Cr: ZnS chirped-pulse oscillator[J]. Opt. Express, 2014, 22(6):7284-7289.doi:10.1364/OE.22.007284
    [32] XU S C, MAN B Y, JIANG S Z, et al.. Sapphire-based graphene saturable absorber for long-time working femtosecond lasers[J]. Opt. Lett., 2014, 39(9):2707-2710.doi:10.1364/OL.39.002707
    [33] XU S C, MAN B Y, JIANG S Z, et al.. Direct growth of graphene on quartz substrate as saturable absorber for femtosecond solid-state laser[J]. Laser Phys. Lett., 2014, 11(8):085801.doi:10.1088/1612-2011/11/8/085801
    [34] MA J, XIE G Q, LV P, et al.. Wavelength versatile graphene gold film saturable absorber mirror for ultra-broadband mode-locking of bulk lasers[J]. Sci. Rep., 2014, 4(6):6186.https://www.researchgate.net/publication/262581847_Wavelength-Versatile_Graphene-Gold_Film_Saturable_Absorber_Mirror_for_Ultra-Broadband_Mode-Locking_of_Bulk_Lasers
    [35] PANA S D, CUI L, LIU J Q, et al.. Passively Q-switched mode-locking Nd: GdVO4laser with a chemically reduced graphene oxide saturable absorber[J]. Opt. Mater. Express, 2014, 38(20):42-45.https://www.sciencedirect.com/science/article/pii/S0030402615013807
    [36] HUANG Q J, JI W, JIANG S Z, et al.. Graphene absorber for passive mode-locking Nd: YVO4laser[J]. Optik, 2015, 126(19):1844-1847.doi:10.1016/j.ijleo.2015.05.016
    [37] GAO S. Diode-end-pumped, passivelyQ-switched, dual-wavelength, Nd: YAG crystal laser with monolayer graphene as saturable absorber operating at 1319 and 1338 nm[J]. Can. J. Physiol., 2016, 94(13):389-392.
    [38] MA J, HUANG H T, NING K J, et al.. Generation of 30 fs pulses from a diode-pumped graphene mode-locked Yb: CaYAlO4laser[J]. Opt. Lett., 2016, 41(5):890-893.doi:10.1364/OL.41.000890
    [39] LIN W M, DUAN X M, CUI Z, et al.. A passively Q-switched Ho: YVO4laser at 2.05 μm with grapheme saturable absorber[J]. Appl. Sci, 2016, 6(5):128.https://www.researchgate.net/publication/224193471_Diode-pumped_passively_Q-switched_NdLu05Y05VO_4_laser_at_134_mm_with_Co2LaMgAl11O_19_as_the_saturable_absorber
    [40] CUI Z, CHEN Y, YAO B Q, et al.. Passively Q-switched Ho: YAG laser with multilayer graphene-based saturable absorber[J]. Chin. J. Lumin., 2016, 37(6):697.http://www.en.cnki.com.cn/Article_en/CJFDTotal-FGXB201606010.htm
    [41] CHO W B, CHOI S Y, ZHU C H, et al.. Graphene mode-locked femtosecond Cr2+: ZnS laser with ~300 nm tuning range[J]. Opt. Express, 2016, 24(18):20774-20780.doi:10.1364/OE.24.020774
    [42] LIN H Y, ZHAO M J, LIN H J, et al.. Graphene-oxide as saturable absorber for a 1342 nmQ-switched Nd: YVO4laser[J]. Optik, 2017, 135(2):129-133.https://es.scribd.com/doc/38529519/Lasers-and-Coherent-Light-Sources
    [43] CANBAZ F, KAKENOV N, KOCABAS C, et al.. Generation of sub-20-fs pulses from a graphene mode-locked laser[J]. Opt. Express, 2017, 25(3):2834-2839.doi:10.1364/OE.25.002834
    [44] HASAN M Z, KANE C L, et al.. Colloquium:topological insulators[J]. Rev. Mod. Phys., 2010, 82(4):3045-3067.doi:10.1103/RevModPhys.82.3045
    [45] LIU J W, HSIEH T H, WEI P, et al.. Spin-filtered edge states with an electrically tunable gap in a two-dimensional topological crystalline insulator[J]. Nat. Mater., 2014, 13(2):178-183.doi:10.1038/nmat3828
    [46] TANG P H, ZHANG X Q, ZHAO C J, et al.. Topological Insulator: Bi2Te3saturable absorber for the passiveQ-switching operation of an in-band pumped 1645-nm Er: YAG ceramic laser[J]. IEEE Photonics J., 2013, 5(2):1500707.doi:10.1109/JPHOT.2013.2250494
    [47] YU H H, ZHANG H, WANG Y C, et al.. Topological insulator as an optical modulator for pulsed solid-state lasers[J]. Laser Photonics Rev., 2013, 7(6):77-83.doi:10.1002/lpor.201300084
    [48] WANG B L, YU H H, ZHANG H, et al.. Topological insulator simultaneously Q-switched dual-wavelength Nd: Lu2O3laser[J]. IEEE Photonics J., 2014, 6(3):1-7.http://ieeexplore.ieee.org/document/6807511/
    [49] HU M T, LIU J H, TIAN J R, et al.. Generation of Q-switched pulse by Bi2Se3topological insulator in Yb: KGW laser[J]. Laser Phys. Lett., 2014, 11(11):115806.doi:10.1088/1612-2011/11/11/115806
    [50] LI P X, ZHANG G J, ZHANG H, et al.. Q-switched mode-locked Nd: YVO4laser by topological insulator Bi2Te3saturable absorber[J]. IEEE Photonic Tech. L., 2014, 26(19):5806.https://www.researchgate.net/publication/283525949_Q-Switched_and_Q-Switched_Mode-Locking_Operation_from_NdYVO_4_Laser_using_Reflective_MoS_2_Saturable_Absorber
    [51] XU B, WANG Y, PENG J, et al.. Topological insulator Bi2Se3based Q-switched Nd: LiYF4nanosecond laser at 1313 nm[J]. Opt. Express, 2015, 23(6):7674-7680.doi:10.1364/OE.23.007674
    [52] JIA F Q, CHEN H, LIU P, et al.. Nanosecond-Pulsed, dual-wavelength passively Q-switched c-Cut Nd: YVO4laser using a few-layer Bi2Se3saturable absorber[J]. IEEE J. Sel. Top. Quantum Electron., 2015, 21(1):369-374.doi:10.1109/JSTQE.2014.2346612
    [53] XU J L, SUN Y J, HE J L, et al.. Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers[J]. Sci. Rep., 2015, 5(2):14856.https://www.researchgate.net/profile/Yan_Wang47/publication/282775286_Ultrasensitive_nonlinear_absorption_response_of_large-size_topological_insulator_and_application_in_low-threshold_bulk_pulsed_lasers/links/561db62e08ae50795afd830f.pdf
    [54] LIN Y Y, LEE P, XU J L, et al.. High-pulse-energy topological insulator Bi2Te3-based passive Q-switched solid-state laser[J]. IEEE Photonics J., 2016, 8(4):1-10.https://www.researchgate.net/publication/305037539_High-Pulse-Energy_Topological_Insulator_Bi2Te3-Based_Passive_Q-Switched_Solid-State_Laser
    [55] KUC A, ZIBOUCHE N, HEINE T, et al.. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Phys. Rev. B, 2011, 83(24):245213.doi:10.1103/PhysRevB.83.245213
    [56] WANG K, WANG J, FAN J, et al.. Ultrafast saturable absorption of two-dimensional MoS2nanosheets[J]. ACS. Nano, 2013, 7(10):9260-9267.doi:10.1021/nn403886t
    [57] CHEN B H, ZHANG X Y, WAN K, et al..Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2[J]. Opt. Express, 2015, 23(20):26723-26737.doi:10.1364/OE.23.026723
    [58] XU B, CHENG Y J, WANG Y, et al.. PassivelyQ-switched Nd: YAlO3nanosecond laser using MoS2as saturable absorber[J]. Opt. Express, 2014, 22(23):28934-28940.doi:10.1364/OE.22.028934
    [59] ZHAN Y, WANG L, WANG J Y, et al.. Yb: YAG thin disk laser passivelyQ-switched by a hydro-thermal grown molybdenum disulfide saturable absorber[J]. Laser Phys., 2015, 25(2):025901.doi:10.1088/1054-660X/25/2/025901
    [60] LOU F, ZHAO R W, HE J L, et al.. Nanosecond-pulsed, dual-wavelength, passivelyQ-switched ytterbium-doped bulk laser based on few-layer MoS2saturable absorber[J]. Photon. Res., 2015, 3(2):A25-A29.doi:10.1364/PRJ.3.000A25
    [61] KONG L C, XIE G Q, YUAN P, et al.. PassiveQ-switching andQ-switched mode-locking operations of 2 μm Tm: CLNGG laser with MoS2saturable absorber mirror[J]. Photon. Res., 2015, 3(2):A47-A50.doi:10.1364/PRJ.3.000A47
    [62] ZOU X, LENG Y X, LI Y Y, et al.. PassivelyQ-switched mode-locked Tm: LLF laser with a MoS2saturable absorber[J]. Chin. Opt. Lett., 2015, 13(8):081405.doi:10.3788/COL
    [63] LIN T, SUN H, WANG X, et al. PassivelyQ-switched Nd: YAG laser with a MoS2solution saturable absorber[J]. Laser Phys., 2015, 25(12):125805.doi:10.1088/1054-660X/25/12/125805
    [64] SUN Y J, XU J L, GAO S F, et al.. Wavelength-tunable, passivelyQ-switched Yb: Ca3Y2(BO3)4solid state laser using MoS2saturable absorber[J]. Mater. Lett., 2015, 160(2):268-270.https://gc.science.nus.edu.sg/biblio/export/bibtex
    [65] SUN Y J, XU J L, ZHU Z J, et al.. Comparison of MoS2nanosheets and hierarchical nanospheres in the application of pulsed solid-state lasers[J]. Opt. Mater. Express, 2015, 5(12):2924.doi:10.1364/OME.5.002924
    [66] WANG K, YANG K J, ZHANG X Y, et al. PassivelyQ-switched laser at 1.3 μm with Few-layered MoS2saturable absorber[J]. IEEE J. Sel. Top. Quantum Electron., 2017, 23(1):1600205.https://gc.science.nus.edu.sg/biblio/export/bibtex
    [67] ZHAO W F, YU H, LIAO M Z, et al.. Large area growth of monolayer MoS2film on quartz and its use as a saturable absorber in laser mode-locking[J]. Semicond. Sci. Tech., 2017, 32(2):025013.doi:10.1088/1361-6641/32/2/025013
    [68] KASSANI, KHAZAEINEZHAD R, JEONG H, et al.. All-fiber Er-doped Q-switched laser based on tungsten disulfide saturable absorber[J]. Opt. Mater. Express, 2015, 5(2):373-379.doi:10.1364/OME.5.000373
    [69] MAO D, WANG Y, MA C, et al.. WS2mode-locked ultrafast fiber laser[J]. Sci. Rep., 2015, 5:7965.doi:10.1038/srep07965
    [70] ZHAO G, HAN S, WANG A Z, et al.. Chemical weathering exfoliation of atom-thick transition metal dichalcogenides and their ultrafast saturable absorption properties[J]. Adv. Funct. Mater., 2015, 25(33):5292-5299.doi:10.1002/adfm.201501972
    [71] HOU J, ZHAO G, WU Y Z, et al.. Femtosecond solid state laser based on tungsten disulfide saturable absorber[J]. Opt. Express, 2015, 23(21):27292-27298.doi:10.1364/OE.23.027292
    [72] WANG X, WANG Y G, DUAN L, et al.. Passively Q-switched Nd: YAG laser via a WS2saturable absorber[J]. Opt. Commun., 2016, 367(2):234-238.https://www.sciencedirect.com/science/article/pii/S0030399212001375
    [73] TANG W J, WANG Y J, YANG K J, et al.. 1.36 W PassivelyQ-Switched YVO4/Nd: YVO4laser with a WS2saturable absorber[J]. IEEE Photonic. Tech. L., 2017, 29(5):470-473.doi:10.1109/LPT.2017.2657325
    [74] CHURCHILL, HUGH O H, PABLO J H. Two-dimensional crystals:phosphorus joins the family[J]. Nat. Nanotechnol., 2014, 9(5):330-331.doi:10.1038/nnano.2014.85
    [75] ZHANG B, LOU F, ZHAO R, et al. Exfoliated layers of black phosphorus as saturable absorber for ultrafast solid-state laser[J]. Opt. Lett., 2015, 40(16):3691-3694.doi:10.1364/OL.40.003691
    [76] MA J, LU S, GUO Z, et al.. Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers[J]. Opt. Express, 2015, 23(17):22643-22648.doi:10.1364/OE.23.022643
    [77] WANG Z W, ZHAO R W, HE J L, et al.. Multi-layered black phosphorus as saturable absorber for pulsed Cr: ZnSe laser at 2.4 μm[J]. Opt. Express, 2016, 24(2):1598-1603.doi:10.1364/OE.24.001598
    [78] LU D Z, PAN Z B, ZHANG R, et al.. PassivelyQ-switched ytterbium-doped ScBO3laser with black phosphorus saturable absorber[J]. Opt. Eng., 2016, 55(8):081312.doi:10.1117/1.OE.55.8.081312
  • 加载中
图(7)
计量
  • 文章访问数:2718
  • HTML全文浏览量:625
  • PDF下载量:931
  • 被引次数:0
出版历程
  • 收稿日期:2017-09-05
  • 修回日期:2017-10-26
  • 刊出日期:2018-02-01

目录

    /

      返回文章
      返回
        Baidu
        map