-
摘要:采用水平区熔法生长了碲(Te)掺杂浓度(质量百分比)分别为0.05%,0.1%,0.5%,1%,2%的硒化镓(GaSe)晶体,并分别对掺杂浓度为0.01%,0.07%,0.38%,0.67%,2.07%的GaSe∶Te晶体的光学性能进行了表征。首次研究了GaSe∶Te晶体中刚性层声子模式的转换。吸收光谱测试结果表明:当Te掺杂浓度小于0.38%时,振动中心位于0.59 THz附近的E'(2)刚性模式吸收峰强度可达最大值,这一过程与GaSe∶Te晶体光学性能的提高密切相关。但Te掺杂浓度的进一步提高会导致E'(2)刚性模式吸收峰强度逐渐减弱,当Te掺杂浓度为1%时,E'(2)刚性模式吸收峰基本消失。这两个过程与GaSe∶Te晶体光学质量的下降密切相关。因此,E'(2)刚性模式吸收强度达到最高时对应的掺杂浓度即是GaSe∶Te晶体中Te的最佳掺杂浓度,光整流产生太赫兹过程证实了此结论的正确性。Abstract:-GaSe crystals are grown with the stoichiometric GaSe of 0.05%, 0.1%, 0.5%, 1% and 2%(mass percent) Te and are characterized by GaSe∶Te(0.01%, 0.07%, 0.38%, 0.67% and 2.07%(mass percent)) crystals. The transformation of the rigid layer phonon modes with doping is studied for the first time. The absorption peak of the rigid mode E'(2) centered at ~0.59 THz is rising up in the intensity till reaching a maximal value on the first stage of the doping concentration less than 0.38%(mass percent). This process correlates well with the improvement in the optical property. Further doping is resulting in the decrease of the intensity till vanishing the E'(2) absorption peak at 1%(mass percent) Te. Simultaneously with the E'(2) absorption peak decreasing, the absorption peak of the rigid mode E'(2) centered at 1.78 THz is rising up in the intensity. The two processes correlate well with the degradation in the optical quality of GaSe∶Te crystal. The doping level that results in the highest intensity of the absorption peak of the rigid layer mode E'(2) is proposed as a criterion in the identification of the optimal Te-doping in GaSe crystal that is confirmed by THz generation via optical rectification.
-
Key words:
- Te crystal/
- crystal growth/
- optical property/
- THz/
-
[1] DMITRIEV V G,GURZADYAN G G,NIKOGOSYAN D N.Handbook for Nonlinear Optical Crystals[M]. 3rd ed. Berlin:Springer,1999. [2] LEE Y S.Principles of Terahertz Science and Technology[M]. Berlin:Springer,2008. [3] ALLAKHVERDIEV K R,GULIEV R I,SALAEV E Y,et al.. Investigation of linear and nonlinear optical properties of GaSxSe1-xcrystals[J].Sov. J. Quantum Electron.,1982,12:947-948. [4] SUHRE D R,SINGH N B,BALAKRISHNA V,et al.. Improved crystal quality and harmonic generation in GaSe doped with indium[J].Opt. Lett.,1997,22:775-777. [5] SINGH N B,SUHRE D R,ROSCH W,et al.. Modified GaSe crystals for mid-IR applications[J].J. Cryst. Growth,1999,198:588-592. [6] HSU Y K,CHEN C W,HUANG J Y,et al.. Erbium doped GaSe crystal for mid-IR applications[J].Opt. Express,2006,14:5484-5491. [7] FENG Z S,KANG Z H,WU F G,et al.. SHG in doped GaSe∶In crystals[J].Opt. Express,2008,16:9978-9985. [8] ZHANG H Z,KANG Z H,JIANG Y,et al.. SHG phase matching in GaSe and mixed GaSe1-xSx,x≤0.412, crystals at room temperature[J].Opt. Express,2008,16:9951-9957. [9] RAK Z,MAHANTI S D,MANDAL K C,et al.. Doping dependence of electronic and mechanical properties of GaSe1-xTexand Ga1-xInxSe from first principles[J].Phys. Rev. B,2010,82:155203. [10] SHI W,DING Y J. A monochromatic and high-power terahertz source tunable in the ranges of 2.7~38.4 and 58.2~3540 μm for variety of potential applications[J].Appl. Phys. Lett.,2004,84:1635-1637. [11] DING Y J,SHI W. Widely tunable monochromatic THz sources based on phase-matched difference-frequency generation in nonlinear-optical crystals:a novel approach[J].Laser Phys.,2006,16:562-570. [12] ATUCHIN V V,ANDREEV Y M,SARKISOV S Y,et al.. GaSe1-xSxcrystals for terahertz frequency range[C]//10thAnnual International Conference and Seminar on Micro/Nanotechnologies and Electron Devices(EDM 2009),July 1-6,2009,Novosibirsk Tomsk,Russia,2009:96-99. [13] ANDREEV Y M,BEREZNAYA S A,VINNIK E M,et al.. Optical properties of GaSe1-xSxin THz range[C]//Eight Siberian Conference on Climate and Ecological Monitoring,Oct 8-10,2009,Tomsk,Russia,2009:375-376.(in Russian) [14] LUO Z W,GU X A,ZHU W C,et al.. Optical properties of GaSe∶S crystals in terahertz frequency range[J].Opt. Precision Eng.,2011,19:354-359.(in Chinese) [15] ANDREEV Y M,LANSKII G V,ORLOV S N,et al.. Physical properties, phase matching and frequency conversion in GaSe1-xSx, Ga1-xInxSe and GaSe1-xTex[C]//17thInt. Conf. on Advanced Laser Technologies,Sept 26-Oct 1,2009,Antalya,Turkey,2009. [16] SARKISOV S Y,NAZAROV M M,TOLBANOV O P,et al.. Generation and detection of THz pulsed radiation by GaSe GaSe, GaSe1-xTex, GaSe1-xSx, crystals[C]//IX Russian Conf. on Semiconductor Physics,Sept 28-Oct 3,2009,Novosibirsk Tomsk,Russia,2009.(in Russian) [17] ZHANG L M,GUO J,LI D J,et al.. Dispersion properties of GaSe1-xSxin the terahertz range[J].J. Appl. Spectr.,2011,77:850-856. [18] MANDAL K C,KANG S H,CHOI M,et al.. III VI chalcogenide semiconductor crystals for broadband tunable THz sources and sensors[J].IEEE J. Sel. Top. in Quant. Electron.,2008,14:284-288. [19] CHEN C W,HSU Y K,HUANG J Y,et al.. Generation properties of coherent infrared radiation in the optical absorption region of GaSe crystal[J].Opt. Express,2006,14:10636-10644. [20] CHEN C W,TANG T T,LIN S H,et al.. Optical properties and potential applications ofε-GaSe at terahertz frequencies[J].J. Opt. Soc. Am. B,2009,26:A58-A65. [21] ZHANG Y F,WANG R,KANG Z H,et al.. AgGaS2and Al doped GaSe for IR application[J].Opt. Commun.,2011,284:1677 1681. [22] ANDREEV Y M,VINNIK E M,LANSKII G V,et al.. Generation of tunable THz emission in solid solution GaSe1-xTexcrystals[C]//Eight Siberian Conference on Climate and Ecological Monitoring,Oct 8-10,2009,Tomsk,Russia,2009:380-381.(in Russian) [23] ANDREEV Y M,VINNIK E M,LANSKII G V. Layered compound semiconductor GaSe and GaTe crystals for THz applications[J].Mater. Res. Soc. Symp. Proc.,2007,969:W03-W15. [24] LUO C W,KU S A,CHU W C,et al.. Physical property of the crystals grown from GaSe∶AgGaSe2melt and application in Mid-IR facilities[C]//Int. Conference, Atomic and Molecular Pulsed,Sept 12-16,2011,Tomsk,Russia,2011:117. [25] SARKISOV S Y,NAZAROV M M,SHKURINOV A P,et al.. GaSe1-xSxand GaSe1-xTexsolid solutions for terahertz generation and detection[C]//34thInt. Conf. on Infrared,Millimeter and Terahertz wave(IRMMW-THz-2009),Sept 21-25,2009,Busan,South Korea,2009. [26] DAS S,GHOSH C,VOEVODINA O G,et al.. Modified GaSe crystal as a parametric frequency converter[J].Appl. Phys. B,2006,82:43-46. [27] ANDREEV Y M,ATUCHIN V V,LANSKII G V,et al.. Growth,real structure and applications of GaSe1-xSxcrystals[J].Mat. Sci. Eng. B,2006,128:205-210. [28] WANG T J,GAO J C,ANDREEV Y M,et al.. GaSe1-xSxsolid solutions[J].Rus. Phys. J.,2007,50:560-565. [29] QU Y,KABF Z H,WANG T J,et al.. GaSe1-xSxsecond harmonic generators for CO2lidars[J].Atmos. Oceanic Opt.,2008,21:146-151. [30] KU S A,LUO C W,LIO H L,et al.. Optical properties of nonlinear solid solution GaSe1-xSx(0<x≤0.4) crystals[J].Rus. Phys. J.,2008,51:1083-1089. [31] MAYER G V,KOPYLOVA T N,ANDREEV Y M,et al.. Parametrical conversion of the frequency of organic lasers into the middle-IR range of the spectrum[J].Rus. Phys. J.,2009,52:640-645. [32] CHU L L,ZHANG I F,KANG Z H,et al.. Phase matching for the second harmonic generation in GaSe crystals[J].Rus. Phys. J.,2011,53:1235-1242. [33] ANDREEV Y M,KOKH K A,LANSKII G V V,et al.. Structural characterization of pure and doped GaSe by nonlinear optical method[J].J. Cryst. Growth,2011,318:1164-1166. [34] HAYEK M,BRAFMAN O,LIETH R M A. Splitting and coupling of lattice modes in the layer compounds GaSe, GaS, and GaSexS1-x[J].Phys. Rev. B,1973,8:2772-2779. [35] VTODIEV I,LEONTIE L,CARAMAN M,et al.. Optical properties of p-GaSe single crystals doped with Te[J].J. App. Phys.,2009,105:023524. [36] YOSHIDA H,NAKASHIMA S,MITSUISHI A. Phonon Raman spectra of layer compound GaSe[J].Phys. Stat. Sol.(b),1973,59:655-666. [37] MAMEDOV G M,KARABULUT M,ERTAP H,et al.. Exciton photoluminescence, photoconductivity and absorption in GaSe0.9Te0.1alloy crystals[J].J. Lumines.,2009,129:226-230. [38] ABDULLAEV G B,ALLAKHVERDIEV K R,BABAEV S S,et al.. Raman scattering from GaSe1-xTex[J].Solid State Commun.,1980,34:125-128. [39] SHIGETOMI S,IKARI T. Optical and electrical characteristics of p-GaSe doped with Te[J].J. Appl. Phys.,2004,95:6480-6482. [40] MENESES E A,JANNUZZI N,FREITAS J R,et al.. Photoluminescence of layered GaSe1-xTexcrystals[J].Phys. Stat. Sol.(b),1976,78:K35-K38.
点击查看大图
计量
- 文章访问数:3410
- HTML全文浏览量:374
- PDF下载量:1216
- 被引次数:0