留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称轻小型头盔显示器光学系统设计

黄颂超,冯云鹏,程灏波

downloadPDF
黄颂超, 冯云鹏, 程灏波. 非对称轻小型头盔显示器光学系统设计[J]. , 2020, 13(4): 832-841. doi: 10.37188/CO.2019-0193
引用本文: 黄颂超, 冯云鹏, 程灏波. 非对称轻小型头盔显示器光学系统设计[J]. , 2020, 13(4): 832-841.doi:10.37188/CO.2019-0193
HUANG Song-chao, FENG Yun-peng, CHENG Hao-bo. Non-symmetrical design of a compact, lightweight HMD optical system[J]. Chinese Optics, 2020, 13(4): 832-841. doi: 10.37188/CO.2019-0193
Citation: HUANG Song-chao, FENG Yun-peng, CHENG Hao-bo. Non-symmetrical design of a compact, lightweight HMD optical system[J].Chinese Optics, 2020, 13(4): 832-841.doi:10.37188/CO.2019-0193

非对称轻小型头盔显示器光学系统设计

doi:10.37188/CO.2019-0193
基金项目:深圳市科技创新项目(No. JCYJ20170817115037194,No. JCYJ20180307123816647)
详细信息
    作者简介:

    黄颂超(1994—),男,福建泉州人,硕士,助理工程师,主要从事成像光学设计方面的研究。E-mail:478886527@qq.com

    冯云鹏(1981—),男,河北邯郸人,博士,讲师,2011年于北京理工大学获得博士学位,主要从事新型光学系统先进光学制造与检测方面的研究。E-mail:roc@bit.edu.cn

  • 中图分类号:TN141;O439

Non-symmetrical design of a compact, lightweight HMD optical system

Funds:Shenzhen Science and Technology Innovation Project (No. JCYJ20170817115037194, No. JCYJ20180307123816647)
More Information
  • 摘要:针对非对称光学系统视场范围和出瞳直径较窄、光学结构复杂、制造成本昂贵、装配调整麻烦等问题,本文采用在系统中加入自由曲面反射镜的设计方法。首先,论述了双反射镜非对称光学系统的设计要求和工作原理。然后,分析了三反射镜非对称光学系统的离轴结构控制方法。最后,采用XY多项式自由曲面反射镜折叠光路、消除遮拦、扩大视场、校正离轴像差,设计出一款适用于头盔显示器的非对称光学系统。设计的双反射镜非对称光学系统的视场为60°×30°,出瞳直径为8 mm。在截止频率52 lp/mm处,全视场的调制传递函数值大于0.25,系统畸变小于5%,单目系统重量约为190 g。设计结果表明,该非对称光学系统的视场大小和成像质量均有所提升,实现了小型轻量化,可应用于头盔显示器。

  • 图 1离轴双反射式非对称光学系统单目一般结构示意图

    Figure 1.Schematic diagram of monocular general structure of off-axis dual reflection non-symmetric optical system

    图 2三反射镜非对称光学系统的结构控制示意图

    Figure 2.Schematic diagram of structure control of non-symmetrical optical system with three mirrors

    图 3双反射镜非对称光学系统的自由曲面参数设置

    Figure 3.Free-form surface parameter setting of the dual mirror non-symmetric optical system

    图 4双反射镜非对称光学系统的后继透镜组参数设置

    Figure 4.Parameter setting of the subsequent lens group of the dual mirror non-symmetric optical system

    图 5双反射镜非对称光学系统的光路示意图

    Figure 5.Schematic diagram of optical path of dual mirror non-symmetric optical system

    图 6双反射镜非对称光学系统的MTF曲线图

    Figure 6.MTF graphs of dual mirror non-symmetric optical system

    图 7双反射镜非对称光学系统的畸变图

    Figure 7.Distortion diagram of dual mirror non-symmetric optical system

    图 8双反射镜非对称光学系统的点列图

    Figure 8.Spot diagram of a double mirror non-symmetric optical system

    表 1三反射镜非对称光学系统的结构控制宏语言与注解

    Table 1.Control macro language and annotation of non-symmetric optical system structure with three mirror

    ZPL annotation
    !threemirror.zpl ZPLXX.zpl
    !
    nfield=NFLD () Number of fields
    maxfield=MAXF () Maximum half angle of view
    IF(Maxfield==0.0)
    THEN Maxfield=1.0;
    Avoid errors that divide by zero
    ! 面的个数
    n==pvhx () Take the value ofHxton
    ! field
    i=pvhy () Take the value ofHytoi
    ! 子午或弧矢
    j=pvpy () Take the value ofPytoj
    hx=FLDX(i)/maxfield Hx= field of view (xdirection) / maximum field of view
    hy=FLDY(i)/Maxfield Hy= field of view (ydirection) / maximum field of view
    PRINT “Field number”,i
    RAYTRACEhx,hy, 0,j, PWAV () Ray tracing
    PRINT “X-field angle:”, FLDX(i),
    Y-field angle:”, FLDY(i)
    PRINT “X-chief ray:”, RAGX(n),
    Y-chief ray:”, RAGY(n),
    Z-chief ray:”, RAGZ(n)
    Spherical coordinate position at the ray cutoff
    PRINT
    OPTRETURN 0, RAGY(n)
    OPTRETURN 1, RAGZ(n) Return value
    PRINT “All Done!”
    下载: 导出CSV

    表 2三反射镜非对称光学系统的部分ZPL调用方式

    Table 2.Partial ZPL calling method of three mirror asymmetric optical system

    Oper# Op1 Op2 Hx Hy Px Py Target Weight
    1 BLNK 1 field of view meridian upper edge of the intersection of light and face 1
    2 ZPLM 11 0 1 1 0 1 0 0
    3 ZPLM 11 1
    4 BLNK 1 field of view meridian upper edge of the intersection of light and face 2
    5 ZPLM 12 0 3 1 0 1 0 0
    6 ZPLM 12 1
    7 BLNK 1 field of view meridian edge light and face 3 intersection
    8 ZPLM 12 0 6 1 0 −1 0 0
    9 ZPLM 12 1
    10 BLNK Solving straight line
    11 DIFF 6 3
    12 DIFF 5 2
    13 BLNK Solving slopek0
    14 DIVI 12 11
    15 BLNK The distance between the line and the light on the meridian of the field of view
    16 PROD 14 9
    17 PROD 14 3
    18 DIFF 16 17
    19 SUMM 2 18
    20 DIFF 8 19
    21 OPLT 20 250 0.1
    22 OPGT 20 25 0.1
    下载: 导出CSV

    表 3eMagin公司的AMOLED规格参数

    Table 3.Specifications of AMOLED produced by eMagin

    Item Parameter
    Pixel size/μm 9.6×9.6
    Resolution ratio 1 920×1 200
    Visible area/mm 18.7×11.75 (0.856 inch)
    The white light brightness/(cd·m−2) >150
    Contrast >1000:1
    Refresh rate/Hz 30~85
    Power consumption <350 mW(150 cd/m2)
    Weight/g <3
    下载: 导出CSV
  • [1] 夏振平, 胡伏原, 程成, 等. 基于视觉空间定向理论的虚拟现实空间重构[J]. 液晶与显示, 2019, 34(2): 215-219.

    XIA ZH P, HU F P, CHENG CH,et al. Virtual reality space reconstruction based on visual space orientation theory[J].Chinese Journal of Liquid Crystals and Displays, 2019, 34(2): 215-219. (in Chinese)
    [2] 王士铭, 程德文, 黄一帆, 等. 大视场高分辨率光学拼接头盔显示器的设计[J]. 与光电子学进展,2018,55(6):364-369.

    WANG SH M, CHENG D W, HUANG Y F,et al. Design of wide FOV optical-tiled head-mounted display with high-resolution[J].Laser&Optoelectronics Progress, 2018, 55(6): 364-369. (in Chinese)
    [3] 程德文, 王涌天, 常军, 等. 轻型大视场自由曲面棱镜头盔显示器的设计[J]. 红外与 工程,2007,36(3):309-311.doi:10.3969/j.issn.1007-2276.2007.03.006

    CHENG D W, WANG Y T, CHANG J,et al. Design of a lightweight and wide field-of-view HMD system with free-form-surface prism[J].Infrared and Laser Engineering, 2007, 36(3): 309-311. (in Chinese)doi:10.3969/j.issn.1007-2276.2007.03.006
    [4] 徐越, 范君柳, 孙文卿, 等. 基于全息波导的增强现实头盔显示器研究进展[J]. 杂志,2019,40(1):11-17.

    XU Y, FAN J L, SUN W Q,et al. Research progress of augmented reality head-mounted display based on holographic waveguide[J].Laser Journal, 2019, 40(1): 11-17. (in Chinese)
    [5] 刘奡, 张宇宁, 沈忠文, 等. 全息波导显示系统的实现与优化[J]. 光学学报,2017,37(5):0523003.doi:10.3788/AOS201737.0523003

    LIU A, ZHANG Y N, SHEN ZH W,et al. Realization and optimization of holographic waveguide display system[J].Acta Optica Sinica, 2017, 37(5): 0523003. (in Chinese)doi:10.3788/AOS201737.0523003
    [6] 相广鑫, 郭岩, 李文强, 等. L型全息波导构型设计[J]. 电光与控制,2017,24(3):89-92.

    XIANG G X, GUO Y, LI W Q,et al. Design of a holographic waveguide with L configuration[J].Electronics Optics&Control, 2017, 24(3): 89-92. (in Chinese)
    [7] 何丽鹏, 曾振煌, 林峰. 折/反射式离轴头盔显示器光学系统设计[J]. 与光电子学进展,2017,54(12):122201.

    HE L P, ZENG ZH H, LIN F. Optical design of catadioptric off-axis helmet-mounted display[J].Laser&Optoelectronics Progress, 2017, 54(12): 122201. (in Chinese)
    [8] 刘军, 黄玮. 反射式自由曲面头盔显示器光学系统设计[J]. 红外与 工程,2016,45(10):1018001.doi:10.3788/IRLA201645.1018001

    LIU J, HUANG W. Optical system design of reflective head mounted display using freeform surfaces[J].Infrared and Laser Engineering, 2016, 45(10): 1018001. (in Chinese)doi:10.3788/IRLA201645.1018001
    [9] 何子清, 葛超, 王春阳. 基于最小二乘配置的光学镜头畸变校正方法[J]. 液晶与显示, 2019, 34(3): 302-308.

    HE Z Q, GE CH, WANG CH Y. Optical lens distortion correction method based on least square configuration[J].Chinese Journal of Liquid Crystals and Displays, 2019, 34(3): 302-308. (in Chinese)
    [10] 周鑫, 肖锡晟, 孙胜利. 自由曲面在离轴光学系统中的应用[J]. 红外,2017,38(3):6-11, 16.doi:10.3969/j.issn.1672-8785.2017.03.002

    ZHOU X, XIAO X SH, SUN SH L. Application of free-form surface in off-axis optical systems[J].Infrared, 2017, 38(3): 6-11, 16. (in Chinese)doi:10.3969/j.issn.1672-8785.2017.03.002
    [11] 庞志海, 樊学武, 马臻, 等. 自由曲面校正光学系统像差的研究[J]. 光学学报,2016,36(5):0522001.doi:10.3788/AOS201636.0522001

    PANG ZH H, FAN X W, MA ZH,et al. Free-form optical elements corrected aberrations of optical system[J].Acta Optica Sinica, 2016, 36(5): 0522001. (in Chinese)doi:10.3788/AOS201636.0522001
    [12] TSOU B H. System design considerations for a visually coupled system[J].The Infrared and Electro-Optics Systems Handbook, 1993, 8: 515-540.
    [13] 孟祥翔, 刘伟奇, 张大亮, 等. 双自由曲面大视场头盔显示光学系统设计[J]. 红外与 工程,2016,45(4):0418004.doi:10.3788/irla201645.0418004

    MENG X X, LIU W Q, ZHANG D L,et al. Design of wide field-of-view head-mounted display optical system with double freeform surfaces[J].Infrared and Laser Engineering, 2016, 45(4): 0418004. (in Chinese)doi:10.3788/irla201645.0418004
    [14] 李华. 头盔显示器光学系统关键技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2015.

    LI H. Research on key technologies of optical system of helmet-mounted display[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015. (in Chinese)
    [15] 张春燕, 陈文栋, 季渊, 等. 基于OLED微显示器的原子扫描控制器设计[J]. 液晶与显示, 2019, 34(4): 395-401.

    ZHANG CH Y, CHEN W D, JI Y,et al. Design of atomic scan controller based on OLED microdisplay[J].Chinese Journal of Liquid Crystals and Displays, 2019, 34(4): 395-401. (in Chinese)
    [16] 解红军, 张小宝. 一种针对AMOLED器件劣化的电学补偿技术[J]. 液晶与显示, 2019, 34(4): 335-341.

    XIE H J, ZHANG X B. Electronic-compensation technique for improving the degradation of AMOLED Devices[J].Chinese Journal of Liquid Crystals and Displays, 2019, 34(4): 335-341. (in Chinese)
  • 加载中
图(8)/ 表(3)
计量
  • 文章访问数:1928
  • HTML全文浏览量:619
  • PDF下载量:151
  • 被引次数:0
出版历程
  • 收稿日期:2019-09-25
  • 修回日期:2019-11-20
  • 刊出日期:2020-08-01

目录

    /

      返回文章
      返回
        Baidu
        map