-
摘要: 多普勒雷达实际测得的振动信号绝大多数都是时变信号,而基于傅立叶变换的时频分析方法是处理时变信号的有利工具。本文针对 多普勒雷达测得的实际振动信号,比较了魏格纳-维利分布、平滑伪魏格纳-维利分布、频谱图、波恩-约旦分布和扩展修正B分布5种形式的时频分析性能。利用 多普勒雷达测量实际单音响产生的啁啾信号振动、双音响产生的二分量啁啾信号振动、以及成年男性心跳振动3种振动,分析了时频图的分辨率和交叉项抑制情况,并通过计算时频聚集度指数,比较了5种分布情况下振动的分析性能。实验证明,扩展修正B分布的性能优于其他4种时频分布,扩展修正B分布更适合应用于 多普勒雷达材料共振频率探测和心跳检测领域。Abstract:Most actual vibration signals measured by lidar are time-varying signals. Methods of time-frequency analysis based on Fourier transforms are effective tools for processing time-varying signals. In this paper, the properties of the Wigner-Wiley distribution, the smooth pseudo-Wigner-Wiley distribution, the spectrogram, the Bonn-Jordan distribution, and the extended modified B distribution are compared and analyzed with actual vibration signals measured by laser Doppler radar. Three kinds of vibrations are measured with a laser Doppler radar: chirps generated by a single loudspeaker, two-component chirps generated by two loudspeakers, and adult male heartbeat vibrations. Their time-frequency distribution resolution and the suppression of cross-terms are analyzed. By calculating the time-frequency concentration index, the analysis capacites of the five distributions for three vibrations are compared. Experimental results indicate that the performance of the extended modified B distribution is better than that of the other four time-frequency distributions. Therefore, the extended modified B distribution is more suitable for the detection of material resonance frequency of laser Doppler radar and the detection of heartbeat.
-
表 1单分量啁啾信号的振动时频聚集度评价
Table 1.Evaluation of time frequency concentration of single component chirps vibration
时频分布 WVD SPWVD SPEC BJD EMBD 评价指数 1.89×10−4 5.05×10−5 2.88×10−5 1.97×10−4 2.12×10−4 表 2二分量啁啾信号振动时频聚集度评价
Table 2.Evaluation of time frequency concentration of two component chirp vibration
时频分布 WVD SPWVD SPEC BJD EMBD 评价指数 8.88×10−5 7.12×10−5 1.04×10−5 9.16×10−5 1.08×10−4 表 3成年男性心跳振动时频聚集度评价
Table 3.Evaluation of time frequency concentration of adult male heatbeat vibration
时频分布 WVD SPWVD SPEC BJD EMBD 评价指数 2.67×10−4 3.07×10−4 4.00×10−4 4.94×10−4 5.56×10−4 -
WAZ A T, KACZMAREK P R, ABRAMSKI K M. Laser–fibre vibrometry at 1550 nm[J].Measurement Science and Technology, 2009, 20(10): 105301.doi:10.1088/0957-0233/20/10/105301 甄佳奇, 仲维丹, 布音嘎日迪, 等. 正弦调制多光束 外差测量压电材料电致伸缩系数[J]. 发光学报,2017,38(12):1661-1667.doi:10.3788/fgxb20173812.1661ZHEN J Q, ZHONG W D, BU Y,et al. Piezoelectric material electrostriction coefficient measurement method combined sinusoidal modulation with multi-beam laser heterodyne[J].Chinese Journal of Luminescence, 2017, 38(12): 1661-1667. (in Chinese)doi:10.3788/fgxb20173812.1661 陈家键, 胡慧珠, 缪立军, 等. 双频 干涉三自由度微振动测量系统[J]. 光学 精密工程,2019,27(7):1435-1443.doi:10.3788/OPE.20192707.1435CHEN J J, HU H ZH, MIAO L J,et al. Three-degree-of-freedom micro-vibration measurement system based on dual-frequency laser interference[J].Optics and Precision Engineering, 2019, 27(7): 1435-1443. (in Chinese)doi:10.3788/OPE.20192707.1435 GABOR D. Theory of communication. Part 1: the analysis of information[J].Journal of the Institution of Electrical Engineers - Part III:Radio and Communication Engineering, 1946, 93(26): 429-441.doi:10.1049/ji-3-2.1946.0074 ALMEIDA L B. The fractional Fourier transform and time-frequency representations[J].IEEE Transactions on Signal Processing, 1994, 42(11): 3084-3091.doi:10.1109/78.330368 COHEN L. Generalized phase-space distribution functions[J].Journal of Mathematical Physics, 1966, 7(5): 781-786.doi:10.1063/1.1931206 BOASHASH B.Time Frequency Signal Analysis and Processing:A Comprehensive Reference[M]. Amsterdam: Elsevier, 2003. BOASHASH B, BEN-JABEUR T. Design of a high-resolution separable-kernel quadratic TFD for improving newborn health outcomes using fetal movement detection[C].Proceedings of the 2012 11th International Conference on Information Science,Signal Processing and Their Applications,IEEE, 2012: 354-359. VAN EEDEN W D, DE VILLIERS J P, BERNDT R J,et al. Micro-Doppler radar classification of humans and animals in an operational environment[J].Expert Systems with Applications, 2018, 102: 1-11.doi:10.1016/j.eswa.2018.02.019 GAO Y Q, CHEN W H, YANG B,et al. Identifying users based on time-frequency characteristics[J].Journal of Physics:Conference Series, 2019, 1302(4): 042035. LIU J L, WANG S F, ZHENG J Y,et al. Time-frequency signal processing for integrity assessment and damage localization of concrete piles[J].International Journal of Structural Stability and Dynamics, 2020, 20(2): 2050020.doi:10.1142/S0219455420500200 MAJHI S, MUKHERJEE A, GEORGE N V,et al. Corrosion detection in steel bar: a time-frequency approach[J].NDT&E International, 2019, 107: 102150. QI P F, WANG Y C. Seismic time–frequency spectrum analysis based on local polynomial Fourier transform[J].Acta Geophysica, 2020, 68(1): 1-17.doi:10.1007/s11600-019-00377-0 IMADUDDIN S M, LAROVERE K L, KUSSMAN B D,et al. A time-frequency approach for cerebral embolic load monitoring[J].IEEE Transactions on Biomedical Engineering, 2020, 67(4): 1007-1018.doi:10.1109/TBME.2019.2927709 谢斌, 夏立新. 伪Wigner-Ville分布在心电信号时频分析中的应用[J]. 现代信息科技,2019,3(12):56-57, 60.doi:10.3969/j.issn.2096-4706.2019.12.021XIE B, XIA L X. Application of pseudo Wigner-Ville distribution in time-frequency analysis of ECG signals[J].Modern Information Technology, 2019, 3(12): 56-57, 60. (in Chinese)doi:10.3969/j.issn.2096-4706.2019.12.021 饶震红, 王明安, 陈蓁蓁, 等. 柠檬黄与玉米醇溶蛋白的相互作用研究[J]. 发光学报,2019,40(4):511-519.doi:10.3788/fgxb20194004.0511RAO ZH H, WANG M A, CHEN ZH ZH,et al. Interaction between tartrazine and zein[J].Chinese Journal of Luminescence, 2019, 40(4): 511-519. (in Chinese)doi:10.3788/fgxb20194004.0511 王云鹏, 胡以华, 雷武虎, 等. 基于 回波时频图纹理特征的飞机目标分类方法[J]. 光学学报,2017,37(11):1128004.doi:10.3788/AOS201737.1128004WANG Y P, HU Y H, LEI W H,et al. Aircraft target classification method based on texture feature of laser echo time-frequency image[J].Acta Optica Sinica, 2017, 37(11): 1128004. (in Chinese)doi:10.3788/AOS201737.1128004 王云鹏, 胡以华, 雷武虎, 等. 典型旋翼形状参数微多普勒 探测计算方法[J]. 红外与 工程,2018,47(9):0906003.doi:10.3788/IRLA201847.0906003WANG Y P, HU Y H, LEI W H,et al. Algorithm of typical rotor shape parameters by micro-Doppler laser detection[J].Infrared and Laser Engineering, 2018, 47(9): 0906003. (in Chinese)doi:10.3788/IRLA201847.0906003 LÜ T, GUO J, ZHANG H Y,et al. Acquirement and enhancement of remote speech signals[J].Optoelectronics Letters, 2017, 13(4): 275-278.doi:10.1007/s11801-017-7059-9 KURVINEN E, JOHN M, MIKKOLA A. Measurement and evaluation of natural frequencies of bulk ice plate using scanning laser Doppler vibrometer[J].Measurement, 2020, 150: 107091.doi:10.1016/j.measurement.2019.107091 李晴棉, 李也凡, 何大伟, 等. 光外差电信号接收机[J]. 发光学报,1998,19(1):82-84.doi:10.3321/j.issn:1000-7032.1998.01.017LI Q M, LI Y F, HE D W,et al. Optic heterodyning electronic signals receiving device[J].Chinese Journal of Luminescence, 1998, 19(1): 82-84. (in Chinese)doi:10.3321/j.issn:1000-7032.1998.01.017 张晓琳, 唐文彦, 孙和义. 水下声信号的 干涉测量[J]. 光学 精密工程,2010,18(4):809-815.ZHANG X L, TANG W Y, SUN H Y. Laser interferometry of underwater acoustic signals[J].Optics and Precision Engineering, 2010, 18(4): 809-815. (in Chinese) 刘立生, 张合勇, 王挺峰, 等. 外差探测对振动目标多普勒频谱成像[J]. 光学 精密工程,2015,23(6):1508-1515.doi:10.3788/OPE.20152306.1508LIU L SH, ZHANG H Y, WANG T F,et al. Doppler spectrum imaging of vibrating target using laser heterodyne detection[J].Optics and Precision Engineering, 2015, 23(6): 1508-1515. (in Chinese)doi:10.3788/OPE.20152306.1508 JONES D L, PARKS T W. A high resolution data-adaptive time-frequency representation[J].IEEE Transactions on Acoustics,Speech,and Signal Processing, 1990, 38(12): 2127-2135.doi:10.1109/29.61539