-
摘要:基于自行研制的双向反射分布函数(BRDF)测量装置,采用绝对测量方法在20~800 ℃的温度范围内测量了粗糙黄铜表面在近红外波段下的光谱偏振双向反射分布函数,分析了温度对BRDF的影响。结果表明,温度对黄铜表面的BRDF有明显的影响,随着温度的升高,BRDF整体呈现出稳定-增大-减小的变化趋势。对不同温度下材料表面的场扫描电镜、粗糙度和X射线衍射测试表明,温度对样品表面BRDF产生影响的主要原因是表面形貌和化学成分的改变。Abstract:The spectral polarized BRDF of a brass surface in the near-infrared region was measured using the absolute measurement method with a home-made device. The temperature range was 20~800 ℃, and the influence of temperature on the BRDF was analyzed. The results indicate that temperature has an obvious influence on the BRDF of brass. With an increase in temperature, the BRDF was almost constant at first, then increased before finally decreasing. Scanning electron microscope testing, roughness measurement and X-ray diffraction analysis of the brass surface at different temperatures were performed. The test results indicate that the influence of temperature on BRDF can be attributed to variation in surface morphology and chemical composition.
-
Key words:
- spectral BRDF/
- brass/
- near-infrared/
- temperature
-
表 1不同温度下的升温时间和测量时间
Table 1.Heating time and measuring time at different temperatures
目标温度/℃ 升温时间/min 测量时间/min 100 2.7 15.2 200 3.0 15.2 300 3.1 15.2 400 3.4 15.2 500 3.7 15.2 600 4.1 15.2 700 4.6 15.2 800 5.1 15.2 表 2不同温度下样品表面的粗糙度
Table 2.Roughness values of the sample surface at different temperatures
温度/℃ Ra/μm Rz/μm Rq/μm 20 0.155 1.223 0.202 200 0.159 1.254 0.207 300 0.158 1.249 0.210 350 0.161 1.243 0.208 400 0.185 1.303 0.240 500 0.187 1.479 0.247 600 0.223 1.593 0.288 700 0.258 1.769 0.333 800 0.356 2.294 0.445 -
NICODEMUS F E. Directional reflectance and emissivity of an opaque surface[J].Applied Optics, 1965, 4(7): 767-775.doi:10.1364/AO.4.000767 ELLIS K K. Polarimetric bidirectional reflectance distribution function of glossy coatings[J].Journal of the Optical Society of America A, 1996, 13(8): 1758-1762.doi:10.1364/JOSAA.13.001758 SANDMEIER S, MÜLLER C, HOSGOOD B,et al. Physical mechanisms in hyperspectral brdf data of grass and watercress[J].Remote Sensing of Environment, 1998, 66(2): 222-233.doi:10.1016/S0034-4257(98)00060-1 SCHAAF C B, GAO F, STRAHLER A H,et al. First operational BRDF, albedo nadir reflectance products from MODIS[J].Remote Sensing of Environment, 2002, 83(1-2): 135-148.doi:10.1016/S0034-4257(02)00091-3 SCHAEPMAN-STRUB G, SCHAEPMAN M E, PAINTER T H,et al. Reflectance quantities in optical remote sensing-definitions and case studies[J].Remote Sensing of Environment, 2006, 103(1): 27-42.doi:10.1016/j.rse.2006.03.002 MARSCHNER S R, WESTIN S H, LAFORTUNE E,et al. Image-based bidirectional reflectance distribution function measurement[J].Applied Optics, 2000, 39(16): 2592-2600.doi:10.1364/AO.39.002592 BOUSQUET L, LACHÉRADE S, JACQUEMOUD S,et al. Leaf BRDF measurements and model for specular and diffuse components differentiation[J].Remote Sensing of Environment, 2005, 98(2-3): 201-211.doi:10.1016/j.rse.2005.07.005 张百顺, 刘文清, 魏庆农, 等. 基于双向反射分布函数实验测量的目标散射特性的分析[J]. 光学技术,2006,32(2):180-182.doi:10.3321/j.issn:1002-1582.2006.02.006ZHANG B SH, LIU W Q, WEI Q N,et al. Analysis of scattering characteristic of the sample based on BRDF experiment measurements[J].Optical Technique, 2006, 32(2): 180-182. (in Chinese)doi:10.3321/j.issn:1002-1582.2006.02.006 LELOUP F B, FORMENT S, DUTRÉ P,et al. Design of an instrument for measuring the spectral bidirectional scatter distribution function[J].Applied Optics, 2008, 47(29): 5454-5467.doi:10.1364/AO.47.005454 WANG H Y, ZHANG W, DONG A T. Measurement and modeling of Bidirectional Reflectance Distribution Function (BRDF) on material surface[J].Measurement, 2013, 46(9): 3654-3661.doi:10.1016/j.measurement.2013.07.008 GATEBE C K, KING M D. Airborne spectral BRDF of various surface types (ocean, vegetation, snow, desert, wetlands, cloud decks, smoke layers) for remote sensing applications[J].Remote Sensing of Environment, 2016, 179: 131-148.doi:10.1016/j.rse.2016.03.029 KALLEL A. Leaf polarized BRDF simulation based on Monte Carlo 3-D vector RT modeling[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 221: 202-224.doi:10.1016/j.jqsrt.2018.09.033 PELTONIEMI J I, KAASALAINEN S, NÄRÄNEN J,et al. BRDF measurement of understory vegetation in pine forests: dwarf shrubs, lichen, and moss[J].Remote Sensing of Environment, 2005, 94(3): 343-354.doi:10.1016/j.rse.2004.10.009 BARIBEAU R, NEIL W S, CÔTÉ É. Development of a robot-based gonioreflectometer for spectral BRDF measurement[J].Journal of Modern Optics, 2009, 56(13): 1497-1503.doi:10.1080/09500340903045702 JOHANSSON N, NEUMAN M, ANDERSSON M,et al. Influence of finite-sized detection solid angle on bidirectional reflectance distribution function measurements[J].Applied Optics, 2014, 53(6): 1212-1220.doi:10.1364/AO.53.001212 LIU Y L, YU K, LIU Z L,et al. Polarized BRDF measurement of steel E235B in the near-infrared region: based on a self-designed instrument with absolute measuring method[J].Infrared Physics&Technology, 2018, 91: 78-84. 戴景民, 赵忠义, 李颖. 可变温条件下材料表面的双向反射分布函数测量[J]. 应用光学,2008,29(3):321-325.DAI J M, ZHAO ZH Y, LI Y. BRDF measurement of material surface at variable temperatures[J].Journal of Applied Optics, 2008, 29(3): 321-325. (in Chinese) 关洪宇, 张文杰, 赵军明, 等. 钛合金粗糙表面的偏振光及变温BRDF特性[J]. 红外与毫米波学报,2016,35(1):109-115.doi:10.11972/j.issn.1001-9014.2016.01.018GUAN H Y, ZHANG W J, ZHAO J M,et al. Polarization and temperature dependent BRDF of titanium alloy rough surface[J].Journal of Infrared and Millimeter Waves, 2016, 35(1): 109-115. (in Chinese)doi:10.11972/j.issn.1001-9014.2016.01.018 BAILEY A W, EARLY E A, KEPPLER K S,et al. Dynamic bidirectional reflectance distribution functions: measurement and representation[J].Journal of Laser Applications, 2008, 20(1): 22-36.doi:10.2351/1.2831632 李振, 刘寒蒙, 姚志霞, 等. 二氧化钛纳米管阵列/钛pH电极制备与表征[J]. 分析化学,2018,46(12):1961-1967.doi:10.11895/j.issn.0253-3820.181459LI ZH, LIU H M, YAO ZH X,et al. Preparation and characterization of titanium dioxide nanotube array/titanium pH electrode[J].Chinese Journal of Analytical Chemistry, 2018, 46(12): 1961-1967. (in Chinese)doi:10.11895/j.issn.0253-3820.181459 唐小强, 陈裕雲, 罗燕妮, 等. 基于TiO2NRs@ZnIn2S4NSs复合材料的谷胱甘肽光电化学传感器的构建与应用[J]. 分析化学,2019,47(8):1188-1194.TANG X Q, CHEN Y Y, LUO Y N,et al. A novel glutathione photoelectrochemical sensor based on titanium dioxide Nanorods@ZnIn2S4Nanosheets nanocomposites[J].Chinese Journal of Analytical Chemistry, 2019, 47(8): 1188-1194. (in Chinese) 王帅, 徐俊平, 陈厚孚, 等. 金属(氢)氧化物参与木质素微生物转化形成类胡敏酸的结构特征分析[J]. 分析化学,2019,47(11):1809-1815.WANG SH, XU J P, CHEN H F,et al. Structural characteristics of Humic-like acid from microbial transformation of lignin participated by metal (hydro) oxides[J].Chinese Journal of Analytical Chemistry, 2019, 47(11): 1809-1815. (in Chinese)