留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光斑尺寸对连续 辐照铝合金温度响应影响研究

文康,李和章,马壮,高丽红,王富耻,李文智

downloadPDF
文康, 李和章, 马壮, 高丽红, 王富耻, 李文智. 光斑尺寸对连续 辐照铝合金温度响应影响研究[J]. , 2020, 13(5): 1023-1031. doi: 10.37188/CO.2020-0022
引用本文: 文康, 李和章, 马壮, 高丽红, 王富耻, 李文智. 光斑尺寸对连续 辐照铝合金温度响应影响研究[J]. , 2020, 13(5): 1023-1031.doi:10.37188/CO.2020-0022
WEN Kang, LI He-zhang, MA Zhuang, GAO Li-hong, WANG Fu-chi, LI Wen-zhi. Effects of spot size on the temperature response of an aluminum alloy irradiated by a continuous laser[J]. Chinese Optics, 2020, 13(5): 1023-1031. doi: 10.37188/CO.2020-0022
Citation: WEN Kang, LI He-zhang, MA Zhuang, GAO Li-hong, WANG Fu-chi, LI Wen-zhi. Effects of spot size on the temperature response of an aluminum alloy irradiated by a continuous laser[J].Chinese Optics, 2020, 13(5): 1023-1031.doi:10.37188/CO.2020-0022

光斑尺寸对连续 辐照铝合金温度响应影响研究

doi:10.37188/CO.2020-0022
基金项目:国家自然科学基金项目(No. 52073029)
详细信息
    作者简介:

    文 康(1994—),男,江西萍乡人,硕士研究生,2017年于北京理工大学获得学士学位,主要从事 对物质作用机理方面的研究。E-mail:751146409@qq.com

    马 壮(1974—),男,河北昌黎人,博士,教授,博士生导师,1996 年、2001 年于北京理工大学分别获得学士、博士学位,主要从事高温高能防护涂层材料和金属/陶瓷复合材料方面的研究。E-mail:hstrong929@bit.edu.cn

  • 中图分类号:O434.34;O439

Effects of spot size on the temperature response of an aluminum alloy irradiated by a continuous laser

Funds:Supported by National Natural Science Foundation of China (No. 52073029)
More Information
  • 摘要:为了探究不同光斑尺寸连续 辐照6061铝合金的温度响应及热致损伤问题,基于ANSYS有限元软件建立了 辐照下的三维物理模型;使用不同的 参数进行 辐照实验,根据所采集的温度和前表面散射光强度数据,反演计算了靶材在 辐照过程中吸收率的动态变化;最后,利用优化后的模型分析了不同光斑尺寸下, 辐照靶材的温升特点。研究结果表明:在1000 W/cm 2的 辐照条件下,材料的吸收率随着温度的升高而升高;由于 加载的局域化特征,横向热扩散影响纵向温升,光斑足够大时该影响变小,这与其热扩散长度有关;对于4 mm厚的6061铝合金材料,当光斑尺寸大于10 cm时,光斑影响可以忽略,靶材背表面发生熔融损伤时间阈值保持2.6 s不变。

  • 图 1三维有限元仿真模型

    Figure 1.The three-dimensional finite element simulation model

    图 2材料的密度(a)、热导率(b)、热焓(c)随温度的变化情况

    Figure 2.Change of thermal properties of the material with temperature. (a) Density; (b) thermal conductivity; (c) enthapy

    图 36061铝合金反射率图谱

    Figure 3.Reflectivity spectrum of 6061 aluminum alloy

    图 4在1000 W/cm2 辐照条件下铝合金背面中心位置的温升曲线

    Figure 4.Temperature rise curves at the center of aluminum alloy back under 1000 W/cm2laser irradiation

    图 5吸收率反演计算流程

    Figure 5.Absorptivity inversion calculation process

    图 6 辐照下铝合金前-背表面中心位置的温升曲线。(a)1000 W/cm2;(b)1500 W/cm2;(c)2000 W/cm2

    Figure 6.Front-rear surface temperature as a function of time in the central area under laser irradiation. (a) 1 000 W/cm2; (b) 1 500 W/cm2; (c) 2 000 W/cm2

    图 7不同光斑尺寸的 辐照下铝合金前-背表面中心的温升曲线

    Figure 7.Front-rear surface temperature as a function of time in the central area under laser irradiation with different spot sizes

    图 8不同尺寸光斑 辐照下铝合金前表面温度分布。(a)5 cm×5 cm;(b)10 cm×10 cm;(c)30 cm×30 cm;(d)50 cm×50 cm;(e)温度随R的变化图;(f)温度梯度随R的变化图

    Figure 8.Temperature distribution in the front surface of aluminum alloy under laser irradiation with different spot sizes. (a) 5 cm×5 cm; (b) 10 cm×10 cm; (c) 30 cm×30 cm; (d) 50 cm×50 cm; (e) graph of temperaturevs $R$ ; (f) graph of temperature gradientvs $R$

    图 9光斑尺寸为30 cm×30 cm的 辐照2 s时前表面温度场

    Figure 9.Temperature field at the front surface when the laser spot size is 30 cm×30 cm and irradiating time is 2 s

    表 16061铝合金成分[19]

    Table 1.Composition of 6061 aluminum alloy (%)

    $w({\rm{Mg}})$ $w({\rm{Si}})$ $w({\rm{Mn}})$ $w({\rm{Fe}})$ $w({\rm{Cr}})$ $w({\rm{Cu}})$ $w({\rm{Zn}})$ $w({\rm{Al}})$
    1.06 0.53 0.43 0.38 0.17 0.33 0.16 余量
    下载: 导出CSV

    表 2不同温度下6061铝合金表面换热系数[22]

    Table 2.Surface heat transfer coefficients of 6061 aluminum alloy at different temperatures

    $T$/(℃) 20 100 200 300 400 500 600 700
    $h$/( W/m2·℃) 8.22 11.0 13.7 23.2 33.4 46.8 58.0 68.5
    下载: 导出CSV

    表 36061铝合金 吸收率参数设置

    Table 3.Parameter settings of laser absorptivity of 6061 aluminum alloy

    Temperature
    range/ (℃)
    0~200 200~380 380~450 450~525 525~800
    α 0.19 0.25 0.27 0.32 0.74
    下载: 导出CSV
  • 孟献丰, 陆春华, 倪亚茹, 等. 技术的应用与防护[J]. 红外与 工程,2005,34(2):136-141.doi:10.3969/j.issn.1007-2276.2005.02.003

    MENG X F, LU CH H, NI Y R,et al. Application and protection of laser technology[J].Infrared and Laser Engineering, 2005, 34(2): 136-141. (in Chinese)doi:10.3969/j.issn.1007-2276.2005.02.003
    罗曦, 陈培锋, 王英, 等. 新型高功率 加工用 光束展宽方法的探索性研究[J]. 中国 ,2011,38(4):0403003.doi:10.3788/CJL201138.0403003

    LUO X, CHEN P F, WANG Y,et al. An exploratory investigation of wide-band beam shaping for high power laser processing[J].Chinese Journal of Lasers, 2011, 38(4): 0403003. (in Chinese)doi:10.3788/CJL201138.0403003
    刘友强, 曹银花, 李景, 等. 加工用5 kW光纤耦合半导体 器[J]. 光学 精密工程,2015,23(5):1279-1287.doi:10.3788/OPE.20152305.1279

    LIU Y Q, CAO Y H, LI J,et al. 5 kW fiber coupling diode laser for laser processing[J].Optics and Precision Engineering, 2015, 23(5): 1279-1287. (in Chinese)doi:10.3788/OPE.20152305.1279
    王立军, 宁永强, 秦莉, 等. 大功率半导体 器研究进展[J]. 发光学报,2015,36(1):1-19.

    WANG L J, NING Y Q, QIN L,et al. Development of high power diode laser[J].Chinese Journal of Luminescence, 2015, 36(1): 1-19. (in Chinese)
    陈军燕, 卢慧玲, 杨春才. 美军海上 武器发展研究[J]. 飞航导弹,2014(11):67-72.

    CHEN J Y, LU H L, YANG CH C. Research on the development of US marine laser weapons[J].Aerodynamic Missile Journal, 2014(11): 67-72. (in Chinese)
    刘铭. 国外 武器技术的发展[J]. 舰船电子工程,2011,31(4):18-23.doi:10.3969/j.issn.1627-9730.2011.04.005

    LIU M. Development of the laser weapon technology abroad[J].Ship Electronic Engineering, 2011, 31(4): 18-23. (in Chinese)doi:10.3969/j.issn.1627-9730.2011.04.005
    黄勇, 刘杰. 高能 武器的杀伤机理及主要特性分析[J]. 光学与光电技术,2004,2(5):20-23.doi:10.3969/j.issn.1672-3392.2004.05.007

    HUANG Y, LIU J. Analysis on kill mechanism and characteristics of high energy laser weapon[J].Optics&Optoelectronic Technology, 2004, 2(5): 20-23. (in Chinese)doi:10.3969/j.issn.1672-3392.2004.05.007
    乔相信, 成艺光, 唐恩凌, 等. 飞秒脉冲 辐照FRAM诱发的毁伤效应及热演化[J]. 发光学报,2019,40(6):815-825.doi:10.3788/fgxb20194006.0815

    QIAO X X, CHENG Y G, TANG E L,et al. Damage effects and thermal evolution of FRAM irradiated by femtosecond pulsed laser[J].Chinese Journal of Luminescence, 2019, 40(6): 815-825. (in Chinese)doi:10.3788/fgxb20194006.0815
    张江华. 高能 武器毁伤机理及其防护技术[J]. 中国科技信息,2008(20):37, 39.

    ZHANG J H. Damage mechanism and protection technology of high energy laser weapon[J].China Science and Technology Information, 2008(20): 37, 39. (in Chinese)
    READY J F.Effects of High-power Laser Radiation[M]. New York: Academic Press, 1971.
    陈彦北, 陆建, 倪晓武. 作用金属板材的温度场和热应力场[J]. 华中科技大学学报(自然科学版),2007,35(S1):129-132.

    CHEN Y B, LU J, NI X W. Temperature and thermal stress fields during the laser irradiating a metal plate[J].Journal of Huazhong University of Science&Technology(Natural Science Edition) , 2007, 35(S1): 129-132. (in Chinese)
    钱秋冬, 汪庆桃, 钱浩勇. 辐照过程中材料吸收率的理论研究[C]. 第28届全国结构工程学术会议论文集(第Ⅲ册), 中国力学学会结构工程专业委员会, 2019: 459-464.

    QIAN Q D, WANG Q T, QIAN H Y. Theoretical study on absorption rate of materials during laser irradiation[C].Proceedings of the 28th National Conference on Structural Engineering(Volume Ⅲ),Structural Engineering Committee of Chinese Society of Mechanics, 2019: 459-464. (in Chinese)
    张英聪, 沈华, 朱日宏. 连续 辐照材料的三维温度场[J]. 中国 ,2013,40(8):0806002.doi:10.3788/CJL201340.0806002

    ZHANG Y C, SHEN H, ZHU R H. Three-dimensional temperature field of material irradiated by continuous wave laser[J].Chinese Journal of Lasers, 2013, 40(8): 0806002. (in Chinese)doi:10.3788/CJL201340.0806002
    蒙文, 张文杰, 李云霞, 等. 切向气流作用下 辐照对尼龙材料的热烧蚀规律[J]. 光学 精密工程,2017,25(2):351-357.doi:10.3788/OPE.20172502.0351

    MENG W, ZHANG W J, LI Y X,et al. Thermal ablation law of laser irradiation on nylon materials under tangential airflow[J].Optics and Precision Engineering, 2017, 25(2): 351-357. (in Chinese)doi:10.3788/OPE.20172502.0351
    LEE K C, BAEK W K, KWON H,et al. Analysis of melt-through process of 1.07 μm continuous wave high power laser irradiation on metal[J].Journal of Mechanical Science and Technology, 2013, 27(6): 1745-1752.doi:10.1007/s12206-013-0425-z
    SIHN S, CHILDERS L B, WALTERS C T,et al. Computational and experimental study on laser heating of a Ni-based metal alloy[J].International Journal of Heat and Mass Transfer, 2016, 102: 1034-1043.doi:10.1016/j.ijheatmasstransfer.2016.06.061
    宋乃秋. 高能 武器多物理场仿真建模[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    SONG N Q.Multiple Physical Modeling and Simulation of High Energy Laser Weapon[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    王振宝, 吴勇, 杨鹏翎, 等. 强 辐照铝靶温度分布数值模拟及实验研究[J]. 红外与 工程,2014,43(7):2061-2065.doi:10.3969/j.issn.1007-2276.2014.07.002

    WANG ZH B, WU Y, YANG P L,et al. Numerical simulation and experiment on temperature fields distribution of aluminum target under intensive laser[J].Infrared and Laser Engineering, 2014, 43(7): 2061-2065. (in Chinese)doi:10.3969/j.issn.1007-2276.2014.07.002
    王宇, 张腾, 叶晓凤, 等. 6061铝合金搅拌摩擦焊接温度场及性能分析[J]. 电焊机,2014,44(10):152-157.

    WANG Y, ZHANG T, YE X F,et al. Research in the temperature field and mechanical properties of 6061 Aluminum FSW joint[J].Electric Welding Machine, 2014, 44(10): 152-157. (in Chinese)
    张鹏波. 1064 nm重频 辐照复合金属温度场的研究[D]. 长春: 长春理工大学, 2019.

    ZHANG P B. Temperature field of composite metal irradiated by 1064 nm repetitive laser[D]. Changchun: Changchun University of Science and Technology, 2019. (in Chinese)
    DENG A Y, ZHONG ZH, WANG E G,et al.. Stress behavior of incoloy 800 superalloy in slab continuous casting process[C]. MARQUIS F.Proceedings of the 8thPacific Rim International Congress on Advanced Materials and Processing. Cham: Springer, 2013: 2651-2658.
    吴圣川. 铝合金 —电弧复合焊研究及其温度场的数值模拟[D]. 武汉: 华中科技大学, 2005.

    WU SH CH. A study on laser-arc hybrid welding for aluminum alloy and numerical simulation for the temperature field[D]. Wuhan: Huazhong University of Science and Technology, 2005. (in Chinese)
    巩水利. 先进 加工技术[M]. 北京: 航空工业出版社, 2016.

    GONG SH L.Advanced Laser Materials Processing Technology[M]. Beijing: Aviation Industry Press, 2016. (in Chinese)
    王贵兵, 罗飞, 刘仓理. 大气环境下重复频率 辐照45#钢反射率变化分析[J]. 强 与粒子束,2006,18(2):181-183.

    WANG G B, LUO F, LIU C L. Reflectance change of 45#steel irradiated by laser in atmosphere[J].High Power Laser and Particle Beams, 2006, 18(2): 181-183. (in Chinese)
  • 加载中
图(9)/ 表(3)
计量
  • 文章访问数:1734
  • HTML全文浏览量:364
  • PDF下载量:99
  • 被引次数:0
出版历程
  • 收稿日期:2020-02-21
  • 修回日期:2020-03-25
  • 网络出版日期:2020-09-10
  • 刊出日期:2020-10-01

目录

    /

      返回文章
      返回
        Baidu
        map