留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

差动式彩色共聚焦粗糙度评定系统及实验研究

邹景武 余卿 程方

邹景武, 余卿, 程方. 差动式彩色共聚焦粗糙度评定系统及实验研究[J]. 188bet网站真的吗 , 2020, 13(5): 1103-1114. doi: 10.37188/CO.2020-0029
引用本文: 邹景武, 余卿, 程方. 差动式彩色共聚焦粗糙度评定系统及实验研究[J]. 188bet网站真的吗 , 2020, 13(5): 1103-1114. doi: 10.37188/CO.2020-0029
ZOU Jing-wu, YU Qing, CHENG Fang. Differential chromatic confocal roughness evaluation system and experimental research[J]. Chinese Optics, 2020, 13(5): 1103-1114. doi: 10.37188/CO.2020-0029
Citation: ZOU Jing-wu, YU Qing, CHENG Fang. Differential chromatic confocal roughness evaluation system and experimental research[J]. Chinese Optics, 2020, 13(5): 1103-1114. doi: 10.37188/CO.2020-0029

差动式彩色共聚焦粗糙度评定系统及实验研究

基金项目: 国家自然科学基金资助项目(No. 51505162);福建省对外合作项目(No. 2019I0013);福建省杰青基金项目(No. 2018J06014);华侨大学研究生科研创新基金资助项目(No. 18013080065)
详细信息
    作者简介:

    邹景武(1996—),男,福建南平人,硕士研究生,2018年于华侨大学获得学士学位,主要从事光电检测及微纳米测量技术方面的研究。E-mail:zoujingwu96@163.com

    余 卿(1983—),男,江西赣州人,博士,副教授,2005年、2011年于合肥工业大学分别获得学士、博士学位,2017年于上海理工大学光学工程博士后流动站出站,主要从事光电检测、精密机械设计方面的研究。E-mail:yuqing@hqu.edu.cn

    程 方(1981—),男,安徽芜湖人,博士,华侨大学特聘教授,科技部“国家高端境外专家”、福建省“闽江学者”讲座教授。2003年、2006年、2010年于合肥工业大学分别获得学士、硕士、博士学位,2013年于新加坡南洋理工大学计量实验室博士后流动站出站,主要从事计量学、机器视觉和无损检测等方面的研究。E-mail:chengfang@hqu.edu.cn

  • 中图分类号: TH711;TH741

Differential chromatic confocal roughness evaluation system and experimental research

Funds: Supported by National Natural Science Foundation of China (No. 51505162); Foreign Cooperation Projects of Fujian, China (No.2019I0013); Excellent Outstanding Youth Foundation of Fujian Province of China (No. 2018J06014); Subsidized Project for Postgraduates’ Innovative Fund in Scientific Research of Huaqiao University (No. 18013080065)
More Information
  • 摘要: 为了满足大范围表面粗糙度测量评定的需求,本文介绍了一种基于彩色共聚焦传感器的差动式非接触测量评定系统和方法。在所提出的系统中,两个彩色共聚焦传感器和一个光学平晶构成差动式测量系统,并通过球头球窝连接方式与机械运动平台耦合。使用这种差动式结构可以补偿机械运动平台的直线度误差,并可以有效地提高测量评定精度。在此基础上,本文建立了表面粗糙度测量、误差补偿和测量性能评估的方法。为了验证所提出系统的性能,对标准高度台阶量块和粗糙度量块进行了测量评定实验。台阶高度的测量实验结果表明,在60 mm的行程范围内,所提出系统6次重复测量的标准偏差s为0.16 μm,相对标准偏差RSD为0.054%,机械运动平台的直线度误差得到了有效补偿;在测量粗糙度量块时,粗糙度参数RaRq的测量误差分别为0.032 μm和0.073 μm。所提出系统的粗糙度测量评定能力满足大多数工程应用的需求。

     

  • 图 1  彩色共聚焦技术原理图

    Figure 1.  CCM principle diagram

    图 2  粗糙度评定装置的结构示意图

    Figure 2.  Schematic diagram of the roughness measuring instrument

    图 3  装置的空间机构原理图

    Figure 3.  Schematic diagram of space structure of the device

    图 4  球头球窝连接方式示意图

    Figure 4.  Schematic diagram of ball-to-socket connection

    图 5  差动测量原理图

    Figure 5.  Schematic diagram of differential measurement

    图 6  数据处理流程图

    Figure 6.  Data processing flowchart

    图 7  粗糙度评定装置实物图

    Figure 7.  Physical map of roughness evaluation device

    图 8  粗糙度量块

    Figure 8.  Roughness gauge

    图 9  测头1测量结果

    Figure 9.  Roughness results detected by probe 1

    图 10  测头2测量结果

    Figure 10.  Roughness results detected by probe 2

    图 11  直线度误差实验的被测量块

    Figure 11.  Measured step gauge block used for straightness error experiment

    图 12  测头1的台阶测量结果

    Figure 12.  Step measurement results of probe 1

    图 13  测头2的台阶测量结果

    Figure 13.  Step measurement results of probe 2

    图 14  直线度误差修正前后对比结果

    Figure 14.  Comparison results before and after straightness error correction

    表  1  直线导轨选型表

    Table  1.   Linear guide types and corresponding parameters

    名 称型 号行 程/mm闭环分辨率/μm
    xy轴位移台卓立Uksa1001000.1
    z轴位移台卓立Ksa050501
    从动位移台THK VRU6210110
    下载: 导出CSV

    表  2  测头技术参数

    Table  2.   Probe's technical parameters

    名称量程/μm轴向分辨率/nm
    彩色共聚焦测量头110005
    彩色共聚焦测量头26003
    下载: 导出CSV

    表  3  粗糙度Ra对比数据(μm)

    Table  3.   Comparative data of Ra (μm)

    Mahr XR20本文评定装置
    样品Ra标准偏差sRa标准偏差s
    6.35.8100.0005775.8420.003971
    3.22.7280.0010002.7360.002338
    1.61.4710.0005771.4930.002317
    0.80.6220.0005770.5890.002251
    下载: 导出CSV

    表  4  Rq对比数据(μm)

    Table  4.   Comparative data of Rq (μm)

    Mahr XR20本文评定装置
    样品Rq标准偏差sRq标准偏差s
    6.36.7280.0005776.7530.006623
    3.23.2340.0010003.2380.003559
    1.61.7370.0005771.7460.001049
    0.80.7870.0005770.7140.000753
    下载: 导出CSV
    Baidu
  • PARK J B, YANG S M, KO Y. Evaluation of the surface characteristics of various implant abutment materials using confocal microscopy and white light interferometry[J]. Implant Dentistry, 2015, 24(6): 650-656.
    何宝凤, 丁思源, 魏翠娥, 等. 三维表面粗糙度测量方法综述[J]. 光学 精密工程,2019,27(1):78-93. doi: 10.3788/OPE.20192701.0078

    HE B F, DING S Y, WEI C E, et al. Review of measurement methods for a real surface roughness[J]. Optics and Precision Engineering, 2019, 27(1): 78-93. (in Chinese) doi: 10.3788/OPE.20192701.0078
    ZHENG Y, ZHANG X, WANG SH D, et al. Similarity evaluation of topography measurement results by different optical metrology technologies for additive manufactured parts[J]. Optics and Lasers in Engineering, 2020, 126: 105920. doi: 10.1016/j.optlaseng.2019.105920
    何宝凤, 魏翠娥, 刘柄显, 等. 三维表面粗糙度的表征和应用[J]. 光学 精密工程,2018,26(8):1994-2011. doi: 10.3788/OPE.20182608.1994

    HE B F, WEI C E, LIU B X, et al. Three-dimensional surface roughness characterization and application[J]. Optics and Precision Engineering, 2018, 26(8): 1994-2011. (in Chinese) doi: 10.3788/OPE.20182608.1994
    张金峰, 封超, 马芸慧, 等. 微铣金属表面微沟槽结构的粗糙度及形貌分析[J]. 光学 精密工程,2018,26(12):2998-3011. doi: 10.3788/OPE.20182612.2998

    ZHANG J F, FENG CH, MA Y H, et al. Analysis of roughness and morphology of metal surface grooves by micro milling[J]. Optics and Precision Engineering, 2018, 26(12): 2998-3011. (in Chinese) doi: 10.3788/OPE.20182612.2998
    LIN T, HU Y, KONG L T, et al. Effect of surface roughness on plasticity of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(6): 1407-1411. doi: 10.1016/S1003-6326(11)61333-2
    KONG F X, SUN T, GENG Y Q, et al. Measurement method of Wolter-I type mandrel based on a contact-type profilometer[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture, 2019, 233(11): 2173-2182. doi: 10.1177/0954405419830010
    周秋凤. GB/T 1031—2009《产品几何技术规范(GPS)表面结构 轮廓法 表面粗糙度参数及其数值》介绍[J]. 机械工业标准化与质量,2010(3):30-32, 37. doi: 10.3969/j.issn.1007-6905.2010.03.007

    ZHOU Q F. Introduction to GB/T 1031-2009 Geometrical Product Specifications (GPS). Surface texture: profile method, Surface roughness parameters and their values[J]. Machinery Industry Standardization &Quality, 2010(3): 30-32, 37. (in Chinese) doi: 10.3969/j.issn.1007-6905.2010.03.007
    FU SH W, CHENG F, TJAHJOWIDODO T, et al. A non-contact measuring system for in-situ surface characterization based on laser confocal microscopy[J]. Sensors, 2018, 18(8): 2657. doi: 10.3390/s18082657
    XUE B, GENG Y Q, YAN Y D, et al. Effects of AFM tip wear on evaluating the surface quality machined by ultra-precision machining process[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(11): 4663-4675. doi: 10.1007/s00170-019-03958-x
    徐伟. 基于光纤传感器的深孔内表面粗糙度测量方法研究[D]. 镇江: 江苏大学, 2018.

    XU W. Research on detection method of inner surface roughness for deep hole based on fiber optical sensor [D]. Zhenjiang: Jiangsu University, 2018. (in Chinese)
    任志英, 高诚辉, 申丁, 等. 双树复小波稳健滤波在工程表面粗糙度评定中的应用[J]. 光学 精密工程,2014,22(7):1820-1827. doi: 10.3788/OPE.20142207.1820

    REN ZH Y, GAO CH H, SHEN D, et al. Application of DT-CWT robust filtering to evaluation of engineering surface roughness[J]. Optics and Precision Engineering, 2014, 22(7): 1820-1827. (in Chinese) doi: 10.3788/OPE.20142207.1820
    齐兴华. 三维表面粗糙度测量与评定[D]. 哈尔滨: 哈尔滨理工大学, 2017.

    QI X H. Measurement and evaluation of three dimensional surface roughness [D]. Harbin: Harbin University of Science and Technology, 2017. (in Chinese)
    张恒, 孙建春, 向芬, 等. 隧道施工通风壁面粗糙度评定方法及其工程应用[J]. 安全与环境学报,2019,19(1):217-225.

    ZHANG H, SUN J CH, XIANG F, et al. Assessment method to deal with the wall face roughness in the tunnel construction and its application[J]. Journal of Safety and Environment, 2019, 19(1): 217-225. (in Chinese)
    刘颖, 郎治国, 唐文彦. 表面粗糙度光切显微镜测量系统的研制[J]. 红外与金宝搏188软件怎么用 工程,2012,41(3):775-779. doi: 10.3969/j.issn.1007-2276.2012.03.042

    LIU Y, LANG ZH G, TANG W Y. Development of measurement system about light-section microscope for surface roughness[J]. Infrared and Laser Engineering, 2012, 41(3): 775-779. (in Chinese) doi: 10.3969/j.issn.1007-2276.2012.03.042
    瞿雪元, 顾廷权, 方百友. 带钢表面粗糙度在线检测技术最新进展[J]. 电子测量与仪器学报,2017,31(4):493-500.

    QU X Y, GU T Q, FANG B Y. Review of surface roughness online measurement techniques of steel strip[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(4): 493-500. (in Chinese)
    蔡雯, 陈培锋, 王英, 等.基于金宝搏188软件怎么用 散射的表面粗糙度测量系统研究 [J/OL]. 金宝搏188软件怎么用 技术: 1-10[2020-01-09]. http://kns.cnki.net/kcms/detail/51.1125.TN.20191206.1456.002.html.

    CAI W, CHEN P F, WANG Y, et al.. Research of surface roughness measurement system based on laser scattering[J/OL]. Laser Technology: 1-10[2020-01-09]. http://kns.cnki.net/kcms/detail/51.1125.TN.20191206.1456.002.html. (in Chinese)
    易怀安. 基于色彩信息的机器视觉粗糙度检测方法研究[D]. 长沙: 湖南大学, 2017.

    YI H A. Research on the machine vision methods for roughness detection based on color information [D]. Changsha: Hunan University, 2017. (in Chinese)
    李业学, 张学林, 徐福卫, 等. 工件粗糙度在线检测的试验研究[J]. 实验力学,2018,33(5):807-815. doi: 10.7520/1001-4888-17-065

    LI Y X, ZHANG X L, XU F W, et al. Experimental study on online detection of workpiece roughness[J]. Journal of Experimental Mechanics, 2018, 33(5): 807-815. (in Chinese) doi: 10.7520/1001-4888-17-065
    韩晓芹, 宋永锋, 刘雨, 等. 基于超声无损评价的表面粗糙度测量方法[J]. 中国机械工程,2019,30(8):883-889. doi: 10.3969/j.issn.1004-132X.2019.08.001

    HAN X Q, SONG Y F, LIU Y, et al. A surface roughness measurement method based on ultrasonic nondestructive evaluations[J]. China Mechanical Engineering, 2019, 30(8): 883-889. (in Chinese) doi: 10.3969/j.issn.1004-132X.2019.08.001
    朱南南, 张骏. 表面粗糙度金宝搏188软件怎么用 散射检测的多波长光纤传感器[J]. 红外与金宝搏188软件怎么用 工程,2016,45(5):522003. doi: 10.3788/irla201645.0522003

    ZHU N N, ZHANG J. Multi-wavelength fiber sensor for measuring surface roughness based on laser scattering[J]. Infrared and Laser Engineering, 2016, 45(5): 522003. (in Chinese) doi: 10.3788/irla201645.0522003
    臧俊涛. 基于机器视觉与机器学习的磨削齿面粗糙度测量研究[D]. 长沙: 湖南大学, 2018.

    ZANG J T. Research on grinding gear surface roughness measurement methods based on machine vision and machine learning [D]. Changsha: Hunan University, 2018. (in Chinese)
    余卿, 余晓芬, 崔长彩, 等. 并行共焦测量中的并行光源技术综述[J]. 中国光学,2013,6(5):652-659.

    YU Q, YU X F, CUI CH C, et al. Survey of parallel light source technology in parallel confocal measurement[J]. Chinese Optics, 2013, 6(5): 652-659. (in Chinese)
    BAI J, LI X H, WANG X H, et al. Chromatic confocal displacement sensor with optimized dispersion probe and modified centroid peak extraction algorithm[J]. Sensors, 2019, 19(16): 3592. doi: 10.3390/s19163592
    ZINT M, STOCK K, CLAUS D, et al. Development and verification of a snapshot dental intraoral three-dimensional scanner based on chromatic confocal imaging[J]. Journal of Medical Imaging, 2019, 6(3): 033502.
    朱鸿. 光谱共焦位移传感器信号处理与校准研究[D]. 武汉: 华中科技大学, 2019.

    ZHU H. Research on signal processing and calibration of spectral confocal displacement sensor [D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
    西北工业大学机械原理及机械零件教研室. 机械原理[M]. 北京: 高等教育出版社, 1987.

    Teaching and Research Section of Mechanical Principle and Mechanical Parts of Northwest Polytechnic University. Theory of Machines and Mechanisms[M]. Beijing: Higher Education Press, 1987. (in Chinese)
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  2358
  • HTML全文浏览量:  458
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-02
  • 修回日期:  2020-04-08
  • 网络出版日期:  2020-08-08
  • 刊出日期:  2020-10-01

目录

    /

    返回文章
    返回
    Baidu
    map