留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型电光材料调制性能研究进展

吕潇磊,赵继广,杜小平,宋一铄,张朋,张建伟

downloadPDF
吕潇磊, 赵继广, 杜小平, 宋一铄, 张朋, 张建伟. 新型电光材料调制性能研究进展[J]. , 2021, 14(3): 503-515. doi: 10.37188/CO.2020-0039
引用本文: 吕潇磊, 赵继广, 杜小平, 宋一铄, 张朋, 张建伟. 新型电光材料调制性能研究进展[J]. , 2021, 14(3): 503-515.doi:10.37188/CO.2020-0039
LÜ Xiao-lei, ZHAO Ji-guang, DU Xiao-ping, SONG Yi-shuo, ZHANG Peng, ZHANG Jian-wei. Research progress on the modulation properties of new electro-optic materials[J]. Chinese Optics, 2021, 14(3): 503-515. doi: 10.37188/CO.2020-0039
Citation: LÜ Xiao-lei, ZHAO Ji-guang, DU Xiao-ping, SONG Yi-shuo, ZHANG Peng, ZHANG Jian-wei. Research progress on the modulation properties of new electro-optic materials[J].Chinese Optics, 2021, 14(3): 503-515.doi:10.37188/CO.2020-0039

新型电光材料调制性能研究进展

doi:10.37188/CO.2020-0039
基金项目:国家自然科学基金项目(No. 61805284)
详细信息
    作者简介:

    吕潇磊(1992—),男,山东威海人,博士研究生,2017年于航天工程大学获得硕士学位,主要从事目标光学探测、航天任务分析与设计方面的研究。E-mail:Ray_lxl@163.com

    赵继广(1967—),男,山东五莲人,博士,教授,博士生导师,1992年于国防科技大学获得学士学位,2010年于装甲兵工程学院获得博士学位,主要从事目标光学探测、航天任务分析与设计等方面研究。E-mail:zhaoyy8600@163.com

  • 中图分类号:TN384

Research progress on the modulation properties of new electro-optic materials

Funds:Supported by National Natural Science Foundation of China (No. 61805284)
More Information
  • 摘要:基于电光晶体的偏振调制技术在 三维成像领域起着越来越重要的作用。受限于铌酸锂(LN)材料的低视场和高半波电压,采用传统电光调制技术难以进一步提升三维成像性能。随着钙钛矿结构电光材料制备工艺的日趋成熟,基于新型材料的电光调制技术将成为突破 三维成像探测精度的最佳手段,铌镁酸铅-钛酸铅(PMNT)、锆钛酸镧铅(PLZT)和钽铌酸钾(KTN)3种典型材料具有优良的电光性能和介电性质;能够突破视场和半波电压的限制,但应用到电光调制领域时存在PMNT调制带宽较低、PLZT透过性能较差、KTN实际应用带宽较低等难题。未来的研究将着眼于将该调制技术的实用性,一方面通过掺杂改性等手段提升电光调制性能,另一方面通过建立性能表征模型优化系统的信噪比。

  • 图 1偏振调制 三维成像系统的示意图

    Figure 1.Schematic diagram of 3D imaging system for polarization modulation laser

    图 2晶体视场测量结果

    Figure 2.The viewing field measurement results of the crystals

    图 3Bridgman方法生长的PMNT单晶[25]

    Figure 3.PMNT single crystal grown with the Bridgman method

    图 4锆钛酸镧铅(PLZT)光电陶瓷材料[36]

    Figure 4.PLZT optoelectronic ceramic material

    图 5钽铌酸钾(KTa1-xNbxO3, KTN)晶体材料[50]

    Figure 5.KTN crystal material

    图 6一种偏振无关的电光调制器

    Figure 6.A polarization-independent electro-optic modulator

    图 7不同Al掺杂量的PLZT材料透过率与波长相对关系

    Figure 7.Relationship between the transmittance and wavelength of PLZT materials with different Al dopings

    图 8不同Nd掺杂量的PLZT材料透过率与波长相对关系

    Figure 8.Relationship between the transmittance and wavelength of PLZT materials with different Nd dopings

    图 9KTN电光调制器原理示意图(a)及等效电路图(b)

    Figure 9.(a) Schematic of KTN electro-optic modulator and (b) equivalent circuit diagram

    图 103种KTN调制器的3 dB带宽测量

    Figure 10.3 dB bandwidth measurement of three KTN modulators

    表 1室温下632.5 nm波长测得PMNT材料的二次电光系数和1 kHz电场下的介电常数

    Table 1.The secondary electro-optic coefficient of the PMNT material measured at a wavelength of 632.5 nm at room temperature and the dielectric constant under an electric field of 1 kHz

    材料 QEO系数/(10−16m2/V2) 文献 材料 介电常数 文献
    单晶PMN-8PT 8.19 [26] 薄膜PMN-30PT 2800 [30]
    陶瓷PMN-25PT+4%La 8 [27] 薄膜PMN-40PT 1800 [32]
    陶瓷PMN-25PT+3%La 40 [27] 薄膜PMN-30PT+La 2025 [32]
    陶瓷PMN-25PT+2%La (T= 330 K) 10 [27] 薄膜PMN-30PT+Pr 2398 [32]
    陶瓷PMN-33PZT(T= 340 K) 18 [28]
    陶瓷PMN-23PZT 6 [28]
    陶瓷PMN-10PZT (T= 280 K) 2.5 [28]
    下载: 导出CSV

    表 2室温下在632.5 nm波长测得PLZT材料的二次电光系数和1 kHz电场下的介电常数

    Table 2.The secondary electro-optic coefficient of the PLZT material measured at a wavelength of 632.5 nm at room temperature and the dielectric constant under an electric field of 1 kHz

    PLZT材料La/Ti/Zr QEO系数10-16m2/V2 文献 PLZT材料La/Ti/Zr 介电常数 文献
    8/65/35 PLZT(λ=532 nm) 25 [35] 9/65/35PLZT+0.15 mol% Li+Bi(T=348 K) 7819 [37]
    8.8/65/35 PLZT(T=258 K) 2.8 [33] 9/65/35PLZT+0.25 mol% Bi2O3+CuO(T=373 K) 11290 [38]
    9/65/35 PLZT(λ=532 nm) 3.7 [35] 9/65/35PLZT(T=373 K) 10539 [39]
    9.4/65/35 PLZT(T=244 K) 1.48 [33] 7/65/35PLZT+0.08 wt% Cr2O3T=427 K) 13985 [40]
    10/65/35PLZT(λ=532 nm) 1.3 [35] 薄膜PLZT+2%La(f=100 Hz) 1502.59 [42]
    11/40/60PLZT+0.1 mol%Dy(T=385 K) 5.59 [34] PLZT+1.50 mol%Al(T=385 K) 16000 [45]
    下载: 导出CSV

    表 3KTN材料二次电光系数对比分析

    Table 3.Comparative analysis of quadratic electro-optic coefficient of KTN materials

    单位 KTN(Ta/Nb) QEO系数/(10−16m2/V2) 测量条件 备注
    NTT公司 —— 224 T=314 Kλ=685 nm
    山东科学院 0.75/0.25 65 λ=633 nm 调研已经达到10−14量级
    0.63/0.37 86 室温λ=633 nm
    美国宾夕法尼亚大学 0.7/0.3 20 T=299 Kλ=532 nm Kovacs前
    694 0.45 K/s降温 Kovacs后
    哈尔滨工业大学 0.61/0.39 59.6 T=296 Kλ=632.8 nm
    下载: 导出CSV

    表 4PMNT、PLZT和KTN电光调制可行性分析(附LN作为比较)

    Table 4.Feasibility analysis of electro-optic modulation by PMNT, PLZT and KTN (with LN for comparison)

    材料名称 有效电光系数/(m2·V−2) 半波电压/V 调制电压/V 视场 产品成熟度
    LN 6.8×10−12 1 900 ~600 <5° 非常成熟
    PMNT ~4×10−15 ~60 ~20 较成熟(硅酸盐所)
    PLZT ~5×10−16 ~160 ~50 较成熟(硅酸盐所)
    KTN 0.2×10−15 ~260 ~80 ~30° 较成熟(宾夕法尼亚)
    4~9×10−15 ~50 ~16 较成熟(山东科学院)
    2.24×10−14 ~24 ~8 较成熟(NTT公司)
    下载: 导出CSV

    表 5PMNT、PLZT和KTN电光调制适用性分析

    Table 5.Applicability analysis of different electro-optic modulations

    调制器
    类型
    调制性能 衍生难题 解决方式及效果
    低电压调制 大视场
    LN × ×
    PMNT 响应速度慢、
    光散射严重
    难以应用于高速
    电光调制
    PLZT 半波电压高 Dy掺杂使二次电光
    性能明显提高
    透过率低 Dy掺杂和Al掺杂使
    透过率明显提高,
    但无法突破65%
    KTN 实际应用调制
    带宽低
    通过优化系统结构,理论上可以达到ns级响应及数百兆赫兹调制带宽,但实际仍未实现
    下载: 导出CSV
  • [1] 赵炜渝, 邢宁. 美国航天创新项目发展分析[J]. 中国航天,2015(3):23-27.

    ZHAO W Y, XING N. Analysis of the development of US space innovation projects[J].Aerospace China, 2015(3): 23-27. (in Chinese)
    [2] 王雪瑶, 宋博. 美国国防高级研究计划局启动“地球同步轨道卫星自主服务”项目[J]. 国际太空,2016(11):33-38.

    WANG X Y, SONG B. U.S. DARPA started the RSGS program[J].Space International, 2016(11): 33-38. (in Chinese)
    [3] TICKER R L, CEPOLLINA F, REED B B. NASA’s in-space robotic servicing[C].Proceedings of the AIAA SPACE 2015 Conference and Exposition,AAIA, 2015: 4644.
    [4] STRUBE M, HENRY R, SKELETON E, et al.. Raven: an on-orbit relative navigation demonstration using international space station visiting vehicles[C].American Astronautical Society Guidance and Control Conference,American Astronautical Society, 2015.
    [5] GALANTE J M, VAN EEPOEL J, D’SOUZA C,et al.. Fast Kalman filtering for relative spacecraft position and attitude estimation for the raven ISS hosted payload[R]. AAS 16-045, 2016.
    [6] FORSHAW J L, AGLIETTI G S, NAVARATHINAM N,et al. Remove DEBRIS: An in-orbit active debris removal demonstration mission[J].Acta Astronautica, 2016, 127: 448-463.doi:10.1016/j.actaastro.2016.06.018
    [7] MCMANAMON P F, BANKS P S, BECK J D,et al. Comparison of flash lidar detector options[J].Optical Engineering, 2017, 56(3): 031223.doi:10.1117/1.OE.56.3.031223
    [8] ECKERSLEY S, SAUNDERS C, LOBB D, et al.. Future rendezvous and docking missions enabled by low-cost but safety compliant Guidance Navigation and Control (GNC) architectures[C].Proceedings of The 15th Reinventing Space Conference,British Interplanetary Society, 2017.
    [9] 陈臻. 基于偏振调制的 三维成像方法研究[D]. 北京: 中国科学院大学, 2017.

    CHEN ZH. Research on three-dimensional active imaging with polarization -modulated method[D]. Beijing: University of Chinese Academy of Sciences, 2017. (in Chinese)
    [10] CHEN ZH, LIU B, LIU E H,et al. Electro-optic modulation methods in range-gated active imaging[J].Applied Optics, 2016, 55(3): A184-A190.doi:10.1364/AO.55.00A184
    [11] ZHANG P, DU X P, ZHAO J G,et al. High resolution flash three-dimensional LIDAR systems based on polarization modulation[J].Applied Optics, 2017, 56(13): 3889-3894.doi:10.1364/AO.56.003889
    [12] JO S, KONG H J, BANG H,et al. High resolution three-dimensional flash LIDAR system using a polarization modulating Pockels cell and a micro-polarizer CCD camera[J].Optics Express, 2016, 24(26): A1580-A1585.doi:10.1364/OE.24.0A1580
    [13] 何子清, 葛超, 王春阳. 基于最小二乘配置的光学镜头畸变校正方法[J]. 液晶与显示,2019,34(3):302-309.doi:10.3788/YJYXS20193403.0302

    HE Z Q, GE CH, WANG CH Y. Optical lens distortion correction method based on least square configuration[J].Chinese Journal of Liquid Crystals and Displays, 2019, 34(3): 302-309. (in Chinese)doi:10.3788/YJYXS20193403.0302
    [14] 于国栋. 靶场光学镜头畸变校正方法研究[J]. 液晶与显示,2017,32(3):227-233.doi:10.3788/YJYXS20173203.0227

    YU G D. Distortion correction method for optical lens of the range[J].Chinese Journal of Liquid Crystals and Displays, 2017, 32(3): 227-233. (in Chinese)doi:10.3788/YJYXS20173203.0227
    [15] 李新娥, 班皓, 沙巍, 等. 一种大视场TDICCD相机的多传感器图像配准方法[J]. 液晶与显示,2014,29(4):644-648.doi:10.3788/YJYXS20142904.0644

    LI X E, BAN H, SHA W,et al. Registration method of large field view and multi-sensor images of TDICCD cameras[J].Chinese Journal of Liquid Crystals and Displays, 2014, 29(4): 644-648. (in Chinese)doi:10.3788/YJYXS20142904.0644
    [16] 王越, 蒋毅坚. 3 m点群晶体纵向压电性能的研究[J]. 人工晶体学报,2004,33(3):399-402.

    WANG Y, JIANG Y J. Crystal orientation dependence of longitudinal piezoelectric properties for 3 m point group crystals[J].Journal of Synthetic Crystals, 2004, 33(3): 399-402. (in Chinese)
    [17] BU Y M, ZENG Z Y, DU X P,et al. Theoretical research on new photoelectric mixing technology based on electro-optical modulation[J].Proceedings of SPIE, 2018, 10964: 109640I.
    [18] CHANG Y C, WANG CH, YIN SH ZH,et al. Kovacs effect enhanced broadband large field of view electro-optic modulators in nanodisordered KTN crystals[J].Optics Express, 2013, 21(15): 17760-17768.doi:10.1364/OE.21.017760
    [19] 王菲菲, 邵喜斌. 负型液晶在ADS广视角技术中的应用[J]. 液晶与显示,2016,31(8):760-767.doi:10.3788/YJYXS20163108.0760

    WANG F F, SHAO X B. Application of negative LC in ADS wide view technology[J].Chinese Journal of Liquid Crystals and Displays, 2016, 31(8): 760-767. (in Chinese)doi:10.3788/YJYXS20163108.0760
    [20] YADA M, ISHIHARA Y, NAOE T,et al.. Noise reduction method for electro-optic measurement system using variable gain amplifier[C].Proceedings of 2017 IEEE Region 10 Conference,IEEE, 2017: 1969-1972.
    [21] ZHANG J, NELSON J S, CHEN ZH P. Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator[J].Optics Letters, 2015, 30(2): 147-149.
    [22] PAN X J, CAI Y, ZENG X K,et al. A terahertz EO detector with large dynamical range, high modulation depth and signal-noise ratio[J].Optics Communications, 2017, 391: 135-140.doi:10.1016/j.optcom.2017.01.021
    [23] 卜禹铭, 杜小平, 曾朝阳, 等. 无扫描 三维成像雷达研究进展及趋势分析[J]. 中国光学,2018,11(5):711-727.doi:10.3788/CO.20181105.0711

    BU Y M, DU X P, ZENG ZH Y,et al. Research progress and trend analysis of non-scanning laser 3D imaging radar[J].Chinese Optics, 2018, 11(5): 711-727. (in Chinese)doi:10.3788/CO.20181105.0711
    [24] SHINAGAWA M, KOBAYASHI J, YAGI S,et al. Sensitive electro-optic sensor using KTa1−xNbxO3crystal[J].Sensors and Actuators A:Physical, 2013, 192: 42-48.doi:10.1016/j.sna.2012.12.003
    [25] 罗豪甦, 徐海清, 王评初, 等. 新型压电单晶PMNT的生长和性能研究[J]. 哈尔滨理工大学学报,2002,7(6):98-99, 104.

    LUO H S, XU H Q, WANG P CH,et al. Growth and properties of a new typical piezoelectric sircgle crystal PMNT[J].Journal of Harbin University of Science and Technology, 2002, 7(6): 98-99, 104. (in Chinese)
    [26] LIN Y T, REN B, ZHAO X Y,et al. Large quadratic electro-optic properties of ferroelectric base 0.92Pb(Mg1/3Nb2/3)O3-0.08PbTiO3single crystal[J].Journal of Alloys and Compounds, 2010, 507(2): 425-428.doi:10.1016/j.jallcom.2010.06.068
    [27] KAMZINA L S, WEI R, ZENG J T,et al. Effect of the La concentration on the dielectric and optical properties of the transparent ferroelectric ceramics 75PbMg1/3Nb2/3O3-25PbTiO3[J].Physics of the Solid State, 2011, 53(8): 1608-1613.doi:10.1134/S1063783411080142
    [28] KAMZINA L S, RUAN W, LI G R,et al. Transparent ferroelectric ceramics PbMg1/3Nb2/3O3-xPbZr0.53Ti0.47O3: Dielectric and electro-optical properties[J].Physics of the Solid State, 2012, 54(10): 2024-2029.doi:10.1134/S1063783412100174
    [29] LIU A Y, HAN H L, WEI L L,et al. Microstructure and electrical properties of PMNT thin films prepared by a modified sol-gel process[J].Proceedings of SPIE, 2013, 9068: 90680R.
    [30] 李国柱. PMN-PT单晶及薄膜的光电转换性能研究[D]. 上海: 上海师范大学, 2015.

    LI G ZH. Photoelectric conversion properties of PMN-PT single crystals and thin films[D]. Shanghai: Shanghai Normal University, 2015. (in Chinese)
    [31] EL HOSINY ALI H, JIMéNEZ R, RAMOS R,et al. The role of PbTiO3layers in piezoelectric multilayer composite films based on Pb(Mg1/3Nb2/3)O3-PbTiO3[J].Thin Solid Films, 2017, 636: 730-736.doi:10.1016/j.tsf.2017.07.011
    [32] 张德强. 溶胶凝胶法制备PMNT薄膜及性能研究[D]. 西安: 西安工业大学, 2018.

    ZHANG D Q. Synthesis and properties of PMNT thin films prepared by sol-gel method[D]. Xi’an: Xi’an Technological University, 2018. (in Chinese)
    [33] 孙荣明, 郑芝凤, 祝炳和. 用氧化物原料制备大尺寸PLZT透明陶瓷[J]. 硅酸盐,1981(3):16-20.

    SUN R M, ZHENG ZH F, ZHU B H. Preparation of large-size PLZT transparent ceramics from oxide raw materials[J].Chinese Journal of Ceramics, 1981(3): 16-20. (in Chinese)
    [34] 何夕云, 张勇, 郑鑫森, 等. 镝掺杂锆钛酸铅镧透明陶瓷的结构和电光性能[J]. 光学学报,2009,29(6):1601-1604.doi:10.3788/AOS20092906.1601

    HE X Y, ZHANG Y, ZHENG X S,et al. Structure and electro-optical property of the Dy3+doped lanthanum zirconate-titanate ceramics[J].Acta Optica Sinica, 2009, 29(6): 1601-1604. (in Chinese)doi:10.3788/AOS20092906.1601
    [35] KNIAZKOV A V. Electro-optic study of PZT ferroelectric ceramics using modulation of reflected light[J].Technical Physics, 2016, 61(4): 631-634.doi:10.1134/S1063784216040125
    [36] 中国科学院上海硅酸盐研究所. 锆钛酸镧铅(PLZT)光电陶瓷材料[EB/OL]. (2018-07-12)[2020-02-27].http://www.sic.ac.cn/glbm/kjfzb/sdhzc/xmzs/201202/t20120220_3442451.html.
    [37] LIMPICHAIPANIT A, NGAMJARUROJANA A. Effect of Li and Bi co-doping and sintering temperature on dielectric properties of PLZT 9/65/35 ceramics[J].Ceramics International, 2017, 43(5): 4450-4455.doi:10.1016/j.ceramint.2016.12.094
    [38] SOMWAN S, NGAMJARUROJANA A, LIMPICHAIPANIT A. Dielectric, ferroelectric and induced strain behavior of PLZT 9/65/35 ceramics modified by Bi2O3and CuO co-doping[J].Ceramics International, 2016, 42(9): 10690-10696.doi:10.1016/j.ceramint.2016.03.181
    [39] FUNSUEB N, NGAMJARUROJANA A, TUNKASIRI T,et al. Effect of composition and grain size on dielectric, ferroelectric and induced strain behavior of PLZT/ZrO2composites[J].Ceramics International, 2018, 44(6): 6343-6353.doi:10.1016/j.ceramint.2018.01.025
    [40] SELVAMANI R, SINGH G. TIWARI V S,et al. Dielectric and piezoelectric properties of Cr2O3-doped PLZT (7/65/35) hot pressed ceramics[J].Materials Today Communications, 2018, 15: 100-104.doi:10.1016/j.mtcomm.2018.03.002
    [41] HUANG C, XU J M, FANG ZH,et al. Effect of preparation process on properties of PLZT (9/65/35) transparent ceramics[J].Journal of Alloys and Compounds, 2017, 723: 602-610.doi:10.1016/j.jallcom.2017.06.271
    [42] 许文才. 锆钛酸铅压电薄膜的制备和表征[D]. 大连: 大连理工大学, 2017.

    XU W C. Fabrication and characterization of lead zirconate titanate piezoelectric thin films[D]. Dalian: Dalian University of Technology, 2017. (in Chinese)
    [43] 郭有文. PLZT陶瓷的制备及其掺杂改性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    GUO Y W. Preparation and doping modification research of PLZT ceramics[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [44] 刘宇锋. PLZT压电陶瓷的弛豫特性和压电特性研究[D]. 广州: 华南理工大学, 2018.

    LIU Y F. Studies of relaxation and piezoelectric properties of PLZT ceramics[D]. Guangzhou: South China University of Technology, 2018. (in Chinese)
    [45] ZHU B, CAO ZH D, HE X Y,et al.. The effect of Al doping on ferroelectric and dielectric properties of PLZT transparent electro-optical ceramics[C].Proceedings of 2018 Chinese Materials Conference on Physics and Techniques of Ceramic and Polymeric Materials,Springer, 2018: 205-211.
    [46] NAKAMURA K, MIYAZU J, SASAURA M,et al. Wide-angle, low-voltage electro-optic beam deflection based on space-charge-controlled mode of electrical conduction in KTa1−xNbxO3[J].Applied Physics Letters, 2006, 89(13): 131115.doi:10.1063/1.2357335
    [47] IMAI T, SASAURA M, NAKAMURA K,et al. Crystal growth and electro-optic properties of KTa1-xNbxO3[J].NTT Technical Review, 2007, 5(9): 1-8.
    [48] 王旭平. KTN系列晶体的生长及其性能研究[D]. 济南: 山东大学, 2008.

    WANG X P. Growth and properties investigation of KTN series crystals[D]. Ji’nan: Shandong University, 2008. (in Chinese)
    [49] DI GERONIMO E, BORNAND V, PAPET P. Elaboration and characterization of potassium niobate tantalate ceramics[J].Ceramics International, 2017, 43(1): 953-960.doi:10.1016/j.ceramint.2016.10.025
    [50] 山东省科学院新材料研究所. 钽铌酸钾(KTa1-XNbXO3, KTN)晶体[EB/OL].[2020-02-27].http://crystcn.51sole.com/companyproductdetail_7677292.htm.
    [51] DELRE E, SPINOZZI E, AGRANAT A J,et al. Scale-free optics and diffractionless waves in nanodisordered ferroelectrics[J].Nature Photonics, 2011, 5(1): 39-42.doi:10.1038/nphoton.2010.285
    [52] DELRE E, PARRAVICINI J, PARRAVICINI G,et al.. Wavelength-insensitive negative optical permittivity without nanofabrication in transparent nonlinear dipolar glasses[C].Proceedings of 2012 Conference on Lasers and Electro-Optics(CLEO),IEEE, 2012: 1-2.
    [53] PARRAVICINI J, AGRANAT A J, CONTI C,et al. Equalizing disordered ferroelectrics for diffraction cancellation[J].Applied Physics Letters, 2012, 101(11): 111104.doi:10.1063/1.4751847
    [54] PARRAVICINI J, CONTI C, AGRANAT A J,et al. Programming scale-free optics in disordered ferroelectrics[J].Optics Letters, 2012, 37(12): 2355-2357.doi:10.1364/OL.37.002355
    [55] PIERANGELI D, PARRAVICINI J, DI MEI F,et al. Photorefractive light needles in glassy nanodisordered KNTN[J].Optics Letters, 2014, 39(6): 1657-1660.doi:10.1364/OL.39.001657
    [56] DI MEI F, FALSI L, FLAMMINI M,et al. Giant broadband refraction in the visible in a ferroelectric perovskite[J].Nature Photonics, 2018, 12(12): 734-738.doi:10.1038/s41566-018-0276-3
    [57] TIAN H, YAO B, WANG L,et al. Dynamic response of polar nanoregions under an electric field in a paraelectric KTa0.61Nb0.39O3single crystal near the para-ferroelectric phase boundary[J].Scientific Reports, 2015, 5(1): 13751.doi:10.1038/srep13751
    [58] 王磊. 相界附近钽铌酸钾晶体的电光响应特性及其机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    WANG L. The study of electro-optic response and mechanism in potassium tantalat niobate near the phase boundary[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [59] TAN P, TIAN H, HU CH P,et al. Temperature field driven polar nanoregions in KTa1−xNbxO3[J].Applied Physics Letters, 2016, 109(25): 252904.doi:10.1063/1.4972783
    [60] 姚博. 钽铌酸钾晶体居里温度附近临界特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    YAO B. Critical properties of potassium tantalate niobate crystal near the curie temperature[D]. Harbin: Harbin Institute of Technology, 2016. (in Chinese)
    [61] 毛晨阳. 相变温度附近钽铌酸钾晶体的电光响应研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    MAO CH Y. The study of electro-optical response of potassium tantalate niobate crystal near phase transition temperature[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
    [62] TAN P, TIAN H, MAO CH Y,et al. Field-driven electro-optic dynamics of polar nanoregions in nanodisordered KTa1−xNbxO3crystal[J].Applied Physics Letters, 2017, 111(1): 012903.doi:10.1063/1.4991357
    [63] TAN P, TIAN H, WANG Y,et al. Impact of dipolar clusters on electro-optic effects in KTa1−xNbxO3crystal[J].Optics Letters, 2018, 43(20): 5009-5012.doi:10.1364/OL.43.005009
    [64] ZHANG X J, YE Q, CAI H W,et al. Polarization-independent electro-optic modulator based on PMNT electrically-controlled birefringence effect and Sagnac interferometer[J].Optics&Laser Technology, 2014, 57: 5-8.
    [65] ZHANG X J, YE Q, QU R H,et al. High-power electro-optic switch technology based on novel transparent ceramic[J].Chinese Physics B, 2016, 25(3): 034202.doi:10.1088/1674-1056/25/3/034202
    [66] 宋益澄, 何晓明, 郭乃健. PLZT电光调制器[J]. 光电子· ,1984(4):37-40.

    SONG Y CH, HE X M, GUO N J. PLZT electro-optic modulator[J].Journal of Optoelectronics·Laser, 1984(4): 37-40. (in Chinese)
    [67] CHEN F S, GEUSIC J E, KURTZ S K,et al. Light modulation and beam deflection with potassium tantalate-niobate crystals[J].Journal of Applied Physics, 1966, 37(1): 388-398.doi:10.1063/1.1707846
    [68] ITOH T, SASAURA M, TOYODA S,et al.. High-frequency response of electro-optic single crystal KTaxNb1-xO3in paraelectric phase[C].Proceedings of 2005 Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies,Optical Society of America, 2005: JTuC36.
    [69] CHANG Y C, YIN SH ZH, HOFFMAN R C,et al. Broadband large field of view electro-optic modulators using potassium tantalate niobate (KTN) crystals[J].Proceedings of SPIE, 2013, 8847: 88470L.doi:10.1117/12.2025529
    [70] GUMENNIK A, KURZWEIL-SEGEV Y, AGRANAT A J. Electrooptical effects in glass forming liquids of dipolar nano-clusters embedded in a paraelectric environment[J].Optical Materials Express, 2011, 1(3): 332-343.doi:10.1364/OME.1.000332
    [71] KABESSA Y, YATIV A, ILAN H E,et al. Electro-optical modulation with immunity to optical damage by bipolar operation in potassium lithium tantalate niobate[J].Optics Express, 2015, 23(4): 4348-4356.doi:10.1364/OE.23.004348
    [72] 王骁乾, 沈冬, 郑致刚, 等. 液晶光控取向技术进展[J]. 液晶与显示,2015,30(5):737-751.doi:10.3788/YJYXS20153005.0737

    WANG X Q, SHEN D, ZHEN ZH G,et al. Review on liquid crystal photoalignment technologies[J].Chinese Journal of Liquid Crystals and Displays, 2015, 30(5): 737-751. (in Chinese)doi:10.3788/YJYXS20153005.0737
  • 加载中
图(10)/ 表(5)
计量
  • 文章访问数:2444
  • HTML全文浏览量:832
  • PDF下载量:213
  • 被引次数:0
出版历程
  • 收稿日期:2020-03-10
  • 修回日期:2020-04-14
  • 网络出版日期:2021-04-17
  • 刊出日期:2021-05-14

目录

    /

      返回文章
      返回
        Baidu
        map