-
摘要:为了实现对光学系统杂散光抑制能力的定量评价,开展了10 −9量级高灵敏度点源透射比测试设备的研究和实验验证。采用脉冲光源、脉冲探测的新测量方法,在保证测试系统具有高灵敏度测量能力的同时,简化了微弱光电信号探测组件的复杂程度,建立了一套最大测试口径为600 mm、测试波长为527 nm的点源透射比测试设备,并利用该设备测试了一台250 mm口径空间光学相机的点源透射比。实验结果表明:60°入射角度时的点源透射比测试结果为1.68×10 −9。证明该设备的测试误差在10 −9或更低的量级,具备10 −9量级高灵敏度点源透射比测试能力。本文研究可以为天文望远镜、星敏感器、空间目标监视载荷等多种类型的光学仪器提供杂光抑制性能评估。Abstract:In order to achieve the quantitative evaluation of the stray light attenuation in optical systems, we demonstrated a point source transmission test facility with 10 −9-order sensitivity in this paper. We employed a pulsed source and measured the pulse to obtain the weak signal at the image plane, as well as to simplify the detection system. Using this scheme, we constructed a test facility with a maximum aperture of 600 mm and a test wavelength of 527 nm, and conducted the test with a 250 mm aperture optical system. Experimental results showed that the point transmission at a 60-degree incident angle is 1.68×10 −9. The results prove that the test error of this facility is in the order of 10 −9or below, and the test facility has the ability to test 10 −9-order point source transmissions. This technology can provide quantitative evaluation for various optical systems with strict stray light requirements, like astronomical telescopes, star sensors and spaced target monitor payloads.
-
表 1PST测试能力极限理论计算结果
Table 1.Theoretical analysis results of the PST detection limit
入射角度θ PST测试能力极限 30° 6.2×10−11 40° 7.0×10−11 50° 8.3×10−11 60° 1.1×10−10 70° 1.6×10−10 表 2入光口信号测量值
Table 2.Signal voltages at different positions of the input plane
编号 信号测量值/mV 1 1600 2 2060 3 2120 4 1450 5 1880 6 1800 平均值 1818 表 3距中心视场40°像面信号测量值
Table 3.Detected signal voltages at the image plane at the 40° off-axis angle
(mV) 水平位置1 水平位置2 水平位置3 水平位置4 水平位置5 垂直位置1 580 620 660 660 660 垂直位置2 550 590 630 630 650 垂直位置3 530 570 590 590 620 垂直位置4 490 530 530 530 600 平均值 590.5 表 4距中心视场50°像面信号测量值
Table 4.Detected signal voltages at the image plane at the 50° off-axis angle
(mV) 水平位置1 水平位置2 水平位置3 水平位置4 水平位置5 垂直位置1 310 330 350 380 370 垂直位置2 330 330 350 380 360 垂直位置3 310 330 350 370 360 垂直位置4 300 340 340 360 360 平均值 345.5 表 5距中心视场60°像面信号测量值
Table 5.Detected signal voltages at the image plane at the 60° off-axis angle
(mV) 水平位置1 水平位置2 水平位置3 水平位置4 水平位置5 垂直位置1 210 220 230 250 240 垂直位置2 210 210 230 240 240 垂直位置3 210 220 220 230 230 垂直位置4 190 200 210 230 220 平均值 222 表 6待测系统不同角度下的PST值
Table 6.PSTs at different incident angles of the test subject
测试角度 PST 40° 4.48×10−9 50° 2.62×10−9 60° 1.68×10−9 -
[1] 黄强. 空间光学系统的杂散光分析[J]. 红外,2006,27(1):26-33.HUANG Q. Analysis of stray light in space optical system[J].Infrared, 2006, 27(1): 26-33. (in Chinese) [2] 田铁印, 王红, 吴国栋. 杂光对三线阵相机光学系统成像的影响[J]. 液晶与显示,2012,27(4):847-851.TIAN T Y, WANG H, WU G D. Impact of stray light on image of three line array camera[J].Chinese Journal of Liquid Crystals and Displays, 2012, 27(4): 847-851. (in Chinese) [3] 杨会玲, 吴玉宏, 孙慧婷, 等. 基于杂波抑制的海平线红外弱小目标检测[J]. 液晶与显示,2017,32(4):316-324.doi:10.3788/YJYXS20173204.0316YANG H L, WU Y H, SUN H T,et al. Small dim infrared target detection of horizon region based on clutter rejection[J].Chinese Journal of Liquid Crystals and Displays, 2017, 32(4): 316-324. (in Chinese)doi:10.3788/YJYXS20173204.0316 [4] 钟兴, 贾继强. 空间相机消杂光设计及仿真[J]. 光学 精密工程,2009,17(3):621-625.ZHONG X, JIA J Q. Stray light removing design and simulation of spaceborne camera[J].Optics and Precision Engineering, 2009, 17(3): 621-625. (in Chinese) [5] 陆强. 地球同步轨道空间相机杂散光分析与应用技术的研究[D]. 上海: 中国科学院大学, 2016.LU Q. Study on stray light analysis and application technology of the earth synchronous orbit space camera[D]. Shanghai: University of Chinese Academy of Sciences, 2016. (in Chinese) [6] FLEMING J, GROCHOCKI F, FINCH T,et al. New stray light test facility and initial results[J].Proceedings of SPIE, 2008, 7069: 70690O.doi:10.1117/12.798920 [7] GROCHOCKI F, FLEMING J, KAMPE T. Stray light test results of Operational Landsat Imager 2 (OLI-2) compared to OLI[J].Proceedings of SPIE, 2018, 10750: 107500E. [8] 王治乐, 龚仲强, 张伟, 等. 基于点源透过率的空间光学系统杂光测量[J]. 光学技术,2011,37(4):401-405.WANG ZH L, GONG ZH Q, ZHANG W,et al. Measurement of stray light based on point-source transmittance in space optical system[J].Optical Technique, 2011, 37(4): 401-405. (in Chinese) [9] 曾瑾, 王战虎, 李欣耀, 等. 基于双柱罐结构的三波段杂散光PST测试装置[J]. 红外,2017,38(4):12-16, 22.ZENG J, WANG ZH H, LI X Y,et al. Three-band stray-light test facility for point source transmission based on double cylindrical chamber[J].Infrared, 2017, 38(4): 12-16, 22. (in Chinese) [10] 陈钦芳, 马臻, 王虎, 等. 高精度点源透过率杂光测试系统[J]. 光学 精密工程,2017,25(12):39-44.CHEN Q F, MA ZH, WANG H,et al. High-precision test station for stray light based on point source transmission[J].Optics and Precision Engineering, 2017, 25(12): 39-44. (in Chinese) [11] 吴琪, 徐熙平, 徐亮, 等. 基于PST的杂散光测试系统研究[J]. 长春理工大学学报(自然科学版),2018,41(3):16-21.WU Q, XU X P, XU L,et al. Research on stray light measurement system based on PST[J].Journal of Changchun University of Science and Technology(Natural Science Edition) , 2018, 41(3): 16-21. (in Chinese) [12] 徐亮, 高立民, 赵建科, 等. 基于点源透过率测试系统的杂散光标定[J]. 光学 精密工程,2016,24(7):1607-1614.doi:10.3788/OPE.20162407.1607XU L, GAO L M, ZHAO J K,et al. Calibration of stray light based on point source transmittance measurement system[J].Optics and Precision Engineering, 2016, 24(7): 1607-1614. (in Chinese)doi:10.3788/OPE.20162407.1607 [13] 孙永建, 孙晓明, 刘云起, 等. 基于线性扩散板的高光抑制方法研究[J]. 液晶与显示,2016,31(6):897-901.SUN Y J, SUN X M, LIU Y Q,et al. Specular highlight suppression method based on linear diffuser[J].Chinese Journal of Liquid Crystals and Displays, 2016, 31(6): 897-901. (in Chinese) [14] 曹智睿, 付跃刚, 田浩. 空气洁净度对点源透射比测试准确度的影响[J]. 光子学报,2016,45(1):0112002.doi:10.3788/gzxb20164501.0112002CAO ZH R, FU Y G, TIAN H. The impact for the air cleanliness to the precision of PST test[J].Acta Photonica Sinica, 2016, 45(1): 0112002. (in Chinese)doi:10.3788/gzxb20164501.0112002 [15] 李朝辉, 赵建科, 徐亮, 等. 点源透过率测试系统精度标定与分析[J]. 物理学报,2016,65(11):114206.LI ZH H, ZHAO J K, XU L,et al. Analysis and calibration of precision for point source transmittance system[J].Acta Physica Sinica, 2016, 65(11): 114206. (in Chinese)