Integrated silicon waveguide electro-optic half-adder based on Epsilon-Near-Zero and ITO
-
摘要:为了解决传统电光混合运算逻辑单元速率低、功耗高、尺寸大等问题,以实现电光混合高速运算,本文设计了一种基于介电常数近零态(Epsilon-Near-Zero)和铟锡氧化物(ITO)薄膜电调控的集成硅基波导电光混合半加器。利用ITO激活材料薄膜的电调控特性实现了光路通断和交叉,从而实现了两位二进制数的半加法功能,通过3D-FDTD模拟仿真对器件模型结构参数进行了优化设计。仿真实验结果表明,当施加电压为0 V和2.35 V时,器件能够完成光信号逻辑控制。电光混合半加器工作在1550 nm波长时,其插入损耗为0.63 dB,消光比为31.73 dB,数据传输速率为61.62 GHz,每字节消耗能量为13.44 fJ,整个半加器尺寸小于21.3 μm×1.5 μm×1.2 μm。该器件具有结构紧凑、插入损耗低等特点,为高速电光混合光学逻辑器件及半加器设计提供了理论依据。Abstract:In order to achieve high-speed electro-optic hybrid operation of half-adders and solve their disadvantages in speed, energy consumption and size, a silicon waveguide integrated electro-optic half-adder is designed based on an Epsilon-Near-Zero and ITO electrical-tunable film. The ITO electrical-tunable film is used as the switch for the optical path, and thus achieve the half-add function of two binary numbers. Simulation results show that the device unit can complete the optical signal logic control when the applied voltage is 0 V and 2.35 V. When the hybrid electro-optic half-adder works at a wavelength of 1550 nm, the insertion loss is 0.63 dB, the extinction ratio is 31.73 dB, the data transmission rate is 61.62 GHz, the energy consumption per bit is 13.44 fJ, and the size of the whole half-adder is less than 21.3 μm×1.5 μm×1.2 μm. The device is compact and has a low insertion loss. This provides a theoretical foundation for the design of high-speed hybrid electro-optic logic devices and half-adders.
-
图 1半加器模型及其电极示意图。(a)半加器平面俯视图(b)半加器3D模型(c)半加器器件加电极方案平面俯视图(d)半加器器件加电极方案3D模型
Figure 1.Schematic diagram of the proposed electro-optic half-adder model and its electrode. (a) Top view of the half-adder; (b) 3D model of the half-adder; (c) top view of the half-adder with electrode; (d) 3D model of the half-adder with electrode
图 2ITO薄膜施加电压模型简图及其特性。(a)施加电压模型;(b)模型等效电路;(c)模型等效电路简化图;(d)施加0~4 V电压时,载流子浓度的变化情况;(e)ITO的复合介电常数随电压的变化情况
Figure 2.Schematic diagram of ITO film's applied voltage and its charateristics. (a) The model of applied voltage; (b) equivalent circuit; (c) simplification of the equivalent circuit; (d) variation of carrier concentration when applied voltage is 0~4 V; (e) relationship between the real (green line) and imaginary (red line) components of the complex permittivity ITO as a function of the gating voltage.
图 3(a)光信号直通逻辑控制单元;(b)施加电压情况下,光信号直通逻辑控制单元ON状态下的电磁场分布情况;(c)未施加电压情况下,光信号直通逻辑控制单元OFF状态下的电磁场分布情况;(d)光信号交叉逻辑控制单元;(e)施加电压情况下,光信号交叉、直通逻辑控制单元为交叉状态;(f)未施加电压情况下,光信号交叉、直通逻辑控制单元为直通状态
Figure 3.(a) Straight logic control unit for the optical signal; electromagnetic field distribution of straight logic control unit under ON state (b) and (c) OFF state; (d) BAR and CROSS logic control unit; (e) CROSS state of BAR and CROSS logic control unit with a voltage applied; (f) BAR state of BAR and CROSS logic control unit without a voltage applied
表 1器件模型最优化参数
Table 1.Optimized parameters of the device model
Parameters Values/nm ITO 15 SiO2 14 gap 140 Lc1 1350 Lc2 8700 表 2两位二进制加法功能真值表
Table 2.Truth table of the half-adder
input sum carry x y 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0 1 表 3电光半加器性能参数
Table 3.The performance parameters of the electro-optical half-adder
iput sum carry ER/(dB) IL/(dB) x/V y/V 0 0 0.00035 0.00026 \ \ 2.35 0 0.54762 0.00021 34.7387 0.57609 0 2.35 0.54081 0.00019 35.1733 0.63044 2.35 2.35 0.00038 0.56622 31.7320 0.43103 -
孙凝晖, 谭光明. 高性能计算机发展与政策[J]. 中国科学院院刊,2019,34(6):609-616.SUN N H, TAN G M. Development and policy of high performance computer[J].Bulletin of Chinese Academy of Sciences, 2019, 34(6): 609-616. (in Chinese) 金钟, 陆忠华, 李会元, 等. 高性能计算之源起——科学计算的应用现状及发展思考[J]. 中国科学院院刊,2019,34(6):625-639.JIN ZH, LU ZH H, LI H Y,et al. Origin of high performance computing—current status and developments of scientific computing applications[J].Bulletin of Chinese Academy of Sciences, 2019, 34(6): 625-639. (in Chinese) SERVICE R F. Chipmakers look past Moore's law, and silicon[J].Science, 2018, 361(6400): 321.doi:10.1126/science.361.6400.321 YE P D, ERNST T, KHARE M V. The last silicon transistor: nanosheet devices could be the final evolutionary step for Moore's Law[J].IEEE Spectrum, 2019, 56(8): 30-35.doi:10.1109/MSPEC.2019.8784120 董文婵. 基于标准逻辑单元的全光可编程逻辑阵列研究[D]. 武汉: 华中科技大学, 2018.DONG W CH. Research on all-optical programmable logic array based on canonical logic units[D]. Wuhan: Huazhong University of Science and Technology, 2018. (in Chinese) GRANPAYEH A, HABIBIYAN H, PARVIN P. Photonic crystal directional coupler for all-optical switching, tunable multi/demultiplexing and beam splitting applications[J].Journal of Modern Optics, 2019, 66(4): 359-366.doi:10.1080/09500340.2018.1511859 JANANI K, RAJESH A, SHANKAR T. Design of an optical half-adder using cohesive twin-structured PCRR[J].Journal of Computational Electronics, 2018, 17(2): 837-844.doi:10.1007/s10825-018-1161-5 刁加加, 安立宝, 常春蕊. 碳纳米管在典型微纳电子器件中的应用进展[J]. 液晶与显示,2016,31(2):149-156.DIAO J J, AN L B, CHANG CH R. Progress on the application of carbon nanotubes in typical micro and nano electronic devices[J].Chinese Journal of Liquid Crystals and Displays, 2016, 31(2): 149-156. (in Chinese) 王蒙, 蒋同海, 唐新余, 等. 光通信网络中的信号导向逻辑器件设计[J]. 半导体光电,2018,39(6):802-805, 814.WANG M, JIANG T H, TANG X Y,et al. Design and implementation of signal logic-oriented devices in optical communication network[J].Semiconductor Optoelectronics, 2018, 39(6): 802-805, 814. (in Chinese) 张杰, 李仕琪, 丁健, 等. 基于石墨烯-硅混合集成光波导的电光半加器[J]. 光电子· ,2018,29(8):805-810.ZHANG J, LI SH Q, DING J,et al. Design of a electro-optical half-adder based on silicon-graphene waveguides[J].Journal of Optoelectronics·Laser, 2018, 29(8): 805-810. (in Chinese) REZAEI M H, ZARIFKAR A. Subwavelength electro-optical half-subtractor and half-adder based on graphene plasmonic waveguides[J].Plasmonics, 2019, 14(6): 1939-1947.doi:10.1007/s11468-019-00997-8 DONG G N, WANG Y L, ZHANG X L. High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity[J].Optics Letters, 2018, 43(24): 5977-5980.doi:10.1364/OL.43.005977 SUN SH, NARAYANA V K, SARPKAYA I,et al. Hybrid photonic-plasmonic nonblocking broadband 5× 5 router for optical networks[J].IEEE Photonics Journal, 2018, 10(2): 4900312. ZHU A J, CHEN D Y, XU CH P,et al.. A fault check graph approach for photonic router in network on chip[C].Proceedings of 2018 IEEE 27th Asian Test Symposium, 2018: 13-18. YAHYA M R, WU N, YAN G ZH,et al. RoR: a low insertion loss design of rearrangeable hybrid photonic-plasmonic 6x6 non-blocking router for ONoCs[J].IEICE Electronics Express, 2019, 16: 20190346.doi:10.1587/elex.16.20190346 朱爱军, 赵春霞, 胡聪, 等. 基于细粒度的光片上网络MRR制程漂移容错研究[J]. 仪器仪表学报,2019,40(2):249-256.ZHU A J, ZHAO CH X, HU C,et al. Study on fine-grain based fault tolerance of MRR process variation in photonic network on chip[J].Chinese Journal of Scientific Instrument, 2019, 40(2): 249-256. (in Chinese) 祁媚. 石墨烯薄膜的可控制备及其光调控特性与器件研究[D]. 西安: 西北大学, 2017.QI M. Study on controllable synthesis of graphene film and its optical modulating property/device[D]. Xi’an: Northwest University, 2017. (in Chinese) XIE Y Y, HU X H, ZHANG Y W,et al. Development and antibacterial activities of bacterial cellulose/graphene oxide-CuO nanocomposite films[J].Carbohydrate Polymers, 2020, 229: 115456.doi:10.1016/j.carbpol.2019.115456 ZHAO Y, XING G J, ZHAO Y N,et al. Graphene aerogel modified with a vanadium nitride film by a sputtering method for use in high-performance supercapacitors[J].Materials Letters, 2020, 261: 127085.doi:10.1016/j.matlet.2019.127085 钟东洲, 计永强. 周期性极化铌酸锂晶体的电光复合逻辑门[J]. 光子学报,2015,44(5):0523004.doi:10.3788/gzxb20154405.0523004ZHONG D ZH, JI Y Q. Electro-optical composite logic gates based on periodically poled lithium niobate crystal[J].Acta Photonica Sinica, 2015, 44(5): 0523004. (in Chinese)doi:10.3788/gzxb20154405.0523004 王兰, 董渊, 高嵩, 等. 钙钛矿材料在 领域的研究进展[J]. 中国光学,2019,12(5):993-1014.doi:10.3788/co.20191205.0993WANG L, DONG Y, GAO S,et al. Research progress of perovskite materials in the field of lasers[J].Chinese Optics, 2019, 12(5): 993-1014. (in Chinese)doi:10.3788/co.20191205.0993 KUMAR A, MEDHEKAR S. All optical NOR and NAND gates using four circular cavities created in 2D nonlinear photonic crystal[J].Optics&Laser Technology, 2020, 123: 105910. 杨傅子. 从晶体光学到液晶光学—液晶物理的光学研究方法进展[J]. 液晶与显示,2016,31(1):1-39.YANG F Z. From crystal optics to liquid crystal optics-the development of optical techniques for studying liquid crystal physics[J].Chinese Journal of Liquid Crystals and Displays, 2016, 31(1): 1-39. (in Chinese) 林致远, 杨成绍, 邹志翔, 等. ITO像素电极工序对于HADS产品TFT特性的影响[J]. 液晶与显示,2016,31(1):370-374.LIN ZH Y, YANG CH SH, ZOU ZH X,et al. Effects of pixel ITO process on TFT characteristics of HADS product[J].Chinese Journal of Liquid Crystals and Displays, 2016, 31(1): 370-374. (in Chinese) 靳琳, 宋世超, 文龙, 等. 基于表面等离激元的偏振不灵敏型电光调制器的理论研究[J]. 光电工程,2018,45(11):180156.doi:10.12086/oee.2018.180156JIN L, SONG SH CH, WEN L,et al. Theoretical investigation of surface plasmonic polariton-based electro-optical modulator with low polarization dependence[J].Opto-Electronic Engineering, 2018, 45(11): 180156. (in Chinese)doi:10.12086/oee.2018.180156 LIANG ZH X, XU CH P, ZHU A J,et al. Hybrid photonic-plasmonic electro-optic modulator for optical ring network-on-chip[J].Optik, 2020, 210: 164503.doi:10.1016/j.ijleo.2020.164503 MA ZH ZH, LI ZH R, LIU K,et al. Indium-tin-oxide for high-performance electro-optic modulation[J].Nanophotonics, 2015, 4(1): 198-213.doi:10.1515/nanoph-2015-0006 BADR M M, ABDELATTY M Y, SWILLAM M A. Ultra-fast silicon electro-optic modulator based on ITO-integrated directional coupler[J].Physica Scripta, 2019, 94(6): 065502.doi:10.1088/1402-4896/ab0ce1 傅英, 徐文兰, 陆卫. 半导体量子电子和光电子器件[J]. 物理学进展,2001,21(3):255-277.doi:10.3321/j.issn:1000-0542.2001.03.001FU Y, XU W L, LU W. Semiconductor quantum devices in electronics and optoelectronic[J].Progress in Physics, 2001, 21(3): 255-277. (in Chinese)doi:10.3321/j.issn:1000-0542.2001.03.001 SOREF R. Mid-infrared 2×2 electro-optical switching by silicon and germanium three-waveguide and four-waveguide directional couplers using free-carrier injection[J].Photonics Research, 2014, 2(5): 102-110.doi:10.1364/PRJ.2.000102 BELLANCA G, ORLANDI P, BASSI P. Assessment of the orthogonal and non-orthogonal coupled-mode theory for parallel optical waveguide couplers[J].Journal of the Optical Society of America A, 2018, 35(4): 577-585.doi:10.1364/JOSAA.35.000577