留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应用于红外眼科疾病检测的瞳孔定位算法

蔡怀宇 史玉 娄世良 汪毅 陈文光 陈晓冬

蔡怀宇, 史玉, 娄世良, 汪毅, 陈文光, 陈晓冬. 应用于红外眼科疾病检测的瞳孔定位算法[J]. , 2021, 14(3): 605-614. doi: 10.37188/CO.2020-0170
引用本文: 蔡怀宇, 史玉, 娄世良, 汪毅, 陈文光, 陈晓冬. 应用于红外眼科疾病检测的瞳孔定位算法[J]. , 2021, 14(3): 605-614. doi: 10.37188/CO.2020-0170
CAI Huai-yu, SHI Yu, LOU Shi-liang, WANG Yi, CHEN Wen-guang, CHEN Xiao-dong. Pupil location algorithm applied to infrared ophthalmic disease detection[J]. Chinese Optics, 2021, 14(3): 605-614. doi: 10.37188/CO.2020-0170
Citation: CAI Huai-yu, SHI Yu, LOU Shi-liang, WANG Yi, CHEN Wen-guang, CHEN Xiao-dong. Pupil location algorithm applied to infrared ophthalmic disease detection[J]. Chinese Optics, 2021, 14(3): 605-614. doi: 10.37188/CO.2020-0170

应用于红外眼科疾病检测的瞳孔定位算法

doi: 10.37188/CO.2020-0170
基金项目: 国家重点研发计划(No. 2017YFC0109901);天津市自然科学基金项目(No. 15JCQNJC14200)
详细信息
    作者简介:

    蔡怀宇(1965—),女,湖南涟源人,博士,教授,硕士生导师,1991年、2000年于天津大学分别获得硕士、博士学位,主要从事信息光学、光电技术及仪器和图像处理等方面的研究。E-mai:hycai@tju.edu.cn

    史 玉 (1997—),女,山西吕梁人,天津大学精密仪器与光电工程技术学院硕士研究生,2019年于湖北大学获得学士学位,主要从事光学相干层析成像方面的研究。E-mail:yushi_821@tju.edu.cn

  • 中图分类号: TP391;TN247

Pupil location algorithm applied to infrared ophthalmic disease detection

Funds: Supported by National Key R&D Program of China (No. 2017YFC0109901); Natural Science Foundation Project of Tianjin (No. 15JCQNJC14200)
More Information
  • 摘要: 在眼科疾病检测中,为了对被检测者进行快速、准确、自动化的瞳孔定位,提出一种改进径向对称变换的瞳孔中心点定位算法。首先利用灰度积分投影法结合最大类间方差法,完成对人眼图像的粗分割,并根据多团块筛选条件提取出只包含瞳孔的感兴趣区域(Region Of Interest,ROI)。然后对ROI采用最小外接矩形结合灰度级形态学线性滤波方法,完成搜索半径范围的设置。最后,利用改进的径向对称变换算法进行瞳孔中心点定位。实验结果表明:本文算法的定位误差在8 pixel以内,平均定位时间为0.366 s,能够适应人眼图像中噪声干扰、采集不完整等大量非理性状态,满足多种红外眼科疾病检测设备对瞳孔定位算法的要求。

     

  • 图 1  算法总流程图

    Figure 1.  Flow chart of the improved pupil location algorithm

    图 2  人眼图像ROI分割示意图。(a)竖直投影曲线对照图;(b)水平投影曲线对照图;(c)粗分割图像;(d)二值化图像

    Figure 2.  Schematic diagram of ROI segmentation of a human eye image. (a) Vertical projection curve contrast diagram; (b) horizontal projection curve contrast diagram; (c) coarse segmentation image; (d) binary image

    图 3  受睫毛遮挡的ROI提取示意图。(a)样本1图像;(b)样本1二值化图像;(c)样本1的ROI图像;(d)样本2图像;(e)样本2的二值化图像;(f)样本2的ROI图像,图像源于数据库CASIA-IrisV4

    Figure 3.  Schematic diagram of ROI extraction when pupil was obscured by eyelashes. (a) Image of sample 1; (b) binarization image of sample 1; (c) ROI image of the sample 1; (d) image of sample 2; (e) binarization image of sample 2; (f) ROI image of sample 2, images are derived from the CASIA-IrisV4 database

    图 4  结合灰度级形态学滤波的ROI提取示意图。(a)线性结构元素;(b)样本1的ROI图像;(c)样本2的ROI图像

    Figure 4.  Schematic diagram of ROI extraction combined with grayscale morphological filtering. (a) Linear structural element; (b) ROI image of sample 1; (c) ROI image of sample 2

    图 5  ROI的最小外接矩形示意图

    Figure 5.  Schematic diagrams of minimum circumscribed rectangles of the ROI

    图 6  (a)~(d)为瞳孔定位结果图;(e)~(h)为人眼图像定位结果

    Figure 6.  (a)~(d) Pupil positioning; (e)~(h) localization of human eye

    图 7  不完整瞳孔区域图像的定位结果图。(a)~(d)人眼图像; (e)~(h)定位结果

    Figure 7.  Incomplete pupil area image positioning. (a)~(d) Images of human eye; (e)~(h) localization of human eye

    图 8  3种定位算法结果对比

    Figure 8.  Comparison of localization results by three different algorithms

    图 9  3种算法在CASIA-IrisV4数据库的定位结果

    Figure 9.  Comparison of localization results by three different algorithms in CASIA-IrisV4 database

    表  1  3种算法的精确度和实时性比较

    Table  1.   Comparison of accuracy and real-time performance of three algorithms

    定位方法定位误差/pixel定位时间/s
    本文算法6.3180.366
    传统径向对称变换算法103.6814.610
    基于梯度均值的定位算法7.24210.923
    下载: 导出CSV

    表  2  3种算法适用性比较

    Table  2.   Comparison of applicability of three algorithms

    定位方法定位准确率/%定位时间/s
    本文方法980.053
    传统径向对称变换算法811.093
    基于梯度均值的定位算法938.583
    下载: 导出CSV
    Baidu
  • [1] FLAXMAN S R, BOURNE R R A, RESNIKOFF S, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis[J]. The Lancet Global Health, 2017, 5(12): e1221-e1234. doi: 10.1016/S2214-109X(17)30393-5
    [2] 蔡怀宇, 张玮茜, 韩晓艳, 等. 眼轴及眼前节SS-OCT一体化成像系统[J]. 红外与 工程,2020,49(4):0413006. doi: 10.3788/IRLA202049.0413006

    CAI H Y, ZHANG W Q, HAN X Y, et al. Integrated imaging system of eye axis and anterior segment based on SS-OCT[J]. Infrared and Laser Engineering, 2020, 49(4): 0413006. (in Chinese) doi: 10.3788/IRLA202049.0413006
    [3] 刘珊珊, 汪毅, 张玮茜, 等. 基于SS-OCT的大范围眼轴长度测量系统[J]. 光子学报,2019,48(5):512002. doi: 10.3788/gzxb20194805.0512002

    LIU SH SH, WANG Y, ZHANG W Q, et al. Large-scale axial length measuring system based on SS-OCT[J]. Acta Photonica Sinica, 2019, 48(5): 512002. (in Chinese) doi: 10.3788/gzxb20194805.0512002
    [4] UZUN S, PEHLIVAN E. Evaluation of the macular choroidal thickness using spectral optical coherence tomography in pseudoexfoliation glaucoma[J]. Journal of Glaucoma, 2017, 26(3): e127-e128.
    [5] WANG SH Z, JIN K, LU H T, et al. Human visual system-based fundus image quality assessment of portable fundus camera photographs[J]. IEEE Transactions on Medical Imaging, 2016, 35(4): 1046-1055. doi: 10.1109/TMI.2015.2506902
    [6] ZAPATA M A, ARCOS G, FONOLLOSA A, et al. Telemedicine for a general screening of retinal disease using nonmydriatic fundus cameras in optometry centers: three-year results[J]. Telemedicine Journal and E-Health:the Official Journal of the American Telemedicine Association, 2017, 23(1): 30-36.
    [7] 王晶, 高峰, 李婉越, 等. 瞳孔中心点自动定位与对准装置[J]. 光学 精密工程,2019,27(6):1370-1377. doi: 10.3788/OPE.20192706.1370

    WANG J, GAO F, LI W Y, et al. Device for automatic pupil center location and alignment[J]. Optics and Precision Engineering, 2019, 27(6): 1370-1377. (in Chinese) doi: 10.3788/OPE.20192706.1370
    [8] 常胜江, 孟春宁, 韩建民, 等. 人眼检测技术研究进展[J]. 数据采集与处理,2015,30(6):1131-1146.

    CHANG SH J, MENG CH N, HAN J M, et al. Survey of eye detection[J]. Journal of Data Acquisition &Processing, 2015, 30(6): 1131-1146. (in Chinese)
    [9] LIU P ZH, GUO J M, TSENG S H, et al. Ocular recognition for blinking eyes[J]. IEEE Transactions on Image Processing, 2017, 26(10): 5070-5081. doi: 10.1109/TIP.2017.2713041
    [10] WU Y L, YEH C T, HUNG W C, et al. Gaze direction estimation using support vector machine with active appearance model[J]. Multimedia Tools and Applications, 2014, 70(3): 2037-2062. doi: 10.1007/s11042-012-1220-z
    [11] 田耘, 甄雯, 赵海军. 基于改进的SIFT算子和SVM分类器的瞳孔中心定位[J]. 液晶与显示,2017,32(6):499-505. doi: 10.3788/YJYXS20173206.0499

    TIAN Y, ZHEN W, ZHAO H J. Accurate pupil center location with SIFT descriptor and SVM classifier[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(6): 499-505. (in Chinese) doi: 10.3788/YJYXS20173206.0499
    [12] MENG CH N, ZHAO X P. Webcam-based eye movement analysis using CNN[J]. IEEE Access, 2017, 5: 19581-19587. doi: 10.1109/ACCESS.2017.2754299
    [13] KRUTHIVENTI S S S, AYUSH K, BABU R V. DeepFix: a fully convolutional neural network for predicting human eye fixations[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4446-4456. doi: 10.1109/TIP.2017.2710620
    [14] ZHANG X C, SUGANO Y, FRITZ M, et al.. Appearance-based gaze estimation in the wild[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, 2015: 4511-4520.
    [15] 杨定礼, 张宇林, 周红标, 等. 人眼定位与AdaBoost Gabor滤波的人脸检测算法[J]. 计算机应用研究,2014,31(7):2201-2204. doi: 10.3969/j.issn.1001-3695.2014.07.068

    YANG D L, ZHANG Y L, ZHOU H B, et al. Face detection based on eye location and AdaBoost Gabor filter[J]. Application Research of Computers, 2014, 31(7): 2201-2204. (in Chinese) doi: 10.3969/j.issn.1001-3695.2014.07.068
    [16] WU T H, WANG P, YIN SH N, et al. A dynamical systems novel approach for accurate human eyes location[J]. Journal of Difference Equations and Applications, 2017, 23(1-2): 401-415. doi: 10.1080/10236198.2016.1238469
    [17] SHIDNEKOPPA R A, KAMMAR M, SHREEDHAR K S. Liveness detection based on eye flicker[C]. Proceedings of the 3rd International Conference on Cognitive Computing and Information Processing, Springer, 2018: 71-80.
    [18] VRÂNCEANU R, FLOREA C, FLOREA L, et al. Gaze direction estimation by component separation for recognition of eye accessing cues[J]. Machine Vision and Applications, 2015, 26(2-3): 267-278. doi: 10.1007/s00138-014-0656-8
    [19] 孟春宁, 白晋军, 张太宁, 等. 基于梯度积分投影和最大期望算法的人眼定位[J]. 光电子· ,2012,23(10):1971-1976.

    MENG CH N, BAI J J, ZHANG T N, et al. Eye localization based on gradient integral projection and expectation-maximization algorithm[J]. Journal of Optoelectronics·Laser, 2012, 23(10): 1971-1976. (in Chinese)
    [20] CHEN M H, WEN J, ZHU Y, et al.. Multi-level thresholding for pupil location in eye-gaze tracking systerm[C]. 2016 International Conference on Machine Learning and Cybernetics (ICMLC), IEEE, 2016: 1009-1014.
    [21] 张宏薇, 王仕洋, 李宪龙, 等. 基于Hough变换的瞳孔识别方法研究与实现[J]. 液晶与显示,2016,31(6):621-625. doi: 10.3788/YJYXS20163106.0621

    ZHANG H W, WANG SH Y, LI X L, et al. Research and implementation of pupil recognition based on Hough transform[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(6): 621-625. (in Chinese) doi: 10.3788/YJYXS20163106.0621
    [22] ZHAO ZH Q, ZHANG Y, ZHENG Q L. Fast localization algorithm of eye centers based on improved hough transform[C]. 2019 IEEE 7th International Conference on Bioinformatics and Computational Biology (ICBCB), IEEE, 2019: 185-189.
    [23] SUSITHA N, SUBBAN R. Reliable pupil detection and iris segmentation algorithm based on SPS[J]. Cognitive Systems Research, 2019, 57: 78-84. doi: 10.1016/j.cogsys.2018.09.029
    [24] SHANG L, ZHANG C, WU H ZH. Eye focus detection based on OpenCV[C]. 2019 6th International Conference on Systems and Informatics (ICSAI), IEEE, 2019: 855-858.
    [25] LOY G, ZELINSKY A. Fast radial symmetry for detecting points of interest[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(8): 959-973. doi: 10.1109/TPAMI.2003.1217601
    [26] YAN B, LI J H, LIU SH, et al.. A robust algorithm for pupil center detection[C]. 2011 6th IEEE Conference on Industrial Electronics and Applications, IEEE, 2011: 413-417.
    [27] JEONG M, NAM J Y, KO B C. Eye pupil detection system using an ensemble of regression forest and fast radial symmetry transform with a near infrared camera[J]. Infrared Physics &Technology, 2017, 85: 44-51.
    [28] POULOPOULOS N, PSARAKIS E Z. A new high precision eye center localization technique[C]. 2007 IEEE International Conference on Image Processing (ICIP), IEEE, 2017: 2806-2810.
    [29] 赵彦涛, 聂向荣, 罗军, 等. 基于选择性阈值取反和径向对称的瞳孔中心定位[J]. 光电子· ,2016,27(11):1208-1213.

    ZHAO Y T, NIE X R, LUO J, et al. Pupil center location based on radial symmetry combined with selective threshold[J]. Journal of Optoelectronics·Laser, 2016, 27(11): 1208-1213. (in Chinese)
    [30] TIMM F, BARTH E. Accurate eye centre localisation by means of gradients[C]. Proceedings of the 6th International Conference on Computer Vision Theory and Applications, VISAPP, 2011: 125-130.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1842
  • HTML全文浏览量:  540
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-25
  • 修回日期:  2020-11-09
  • 网络出版日期:  2021-02-05
  • 刊出日期:  2021-05-14

目录

    /

    返回文章
    返回
    Baidu
    map