留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

638 nm光栅外腔窄线宽半导体 器

刘野,刘宇,肖辉东,李洪玲,曲大鹏,郑权

downloadPDF
刘野, 刘宇, 肖辉东, 李洪玲, 曲大鹏, 郑权. 638 nm光栅外腔窄线宽半导体 器[J]. , 2020, 13(6): 1249-1256. doi: 10.37188/CO.2020-0249
引用本文: 刘野, 刘宇, 肖辉东, 李洪玲, 曲大鹏, 郑权. 638 nm光栅外腔窄线宽半导体 器[J]. , 2020, 13(6): 1249-1256.doi:10.37188/CO.2020-0249
LIU Ye, LIU Yu, XIAO Hui-dong, LI Hong-ling, QU Da-peng, ZHENG Quan. 638 nm narrow linewidth diode laser with a grating external cavity[J]. Chinese Optics, 2020, 13(6): 1249-1256. doi: 10.37188/CO.2020-0249
Citation: LIU Ye, LIU Yu, XIAO Hui-dong, LI Hong-ling, QU Da-peng, ZHENG Quan. 638 nm narrow linewidth diode laser with a grating external cavity[J].Chinese Optics, 2020, 13(6): 1249-1256.doi:10.37188/CO.2020-0249

638 nm光栅外腔窄线宽半导体 器

doi:10.37188/CO.2020-0249
基金项目:吉林省科技发展计划项目(No. 20200401072GX)
详细信息
    作者简介:

    刘 野(1990—),女,吉林长春人, 工程师,2016年于吉林大学仪器科学与电气工程学院获得硕士学位,现工作于长春新产业光电技术有限公司,主要从事窄线宽半导体 器的研究。E-mail:liuye@cnilaser.com

  • 中图分类号:TN248.4

638 nm narrow linewidth diode laser with a grating external cavity

Funds:Jilin Province Science and Technology Development Plan (No. 20200401072GX)
More Information
  • 摘要:本文采用反射式全息光栅作为外部反馈元件,设计了638 nm光栅外腔窄线宽 器。使用高分辨率的光谱分析仪检测了Littrow结构的外腔半导体 器的输出光谱,并进一步研究了该 器的阈值和波长调谐特性。实验采用了2400 l/mm和1800 l/mm两种刻线密度的反射式全息光栅进行研究,在120 mA的注入电流下,采用刻线密度为2400 l/mm的光栅外腔 器的输出功率是45.2 mW,将阈值电流由60 mA降至51 mA,下降幅度为11%;采用刻线密度为1800 l/mm的光栅外腔 器的输出功率是38.7 mW,将阈值电流由60 mA降至47 mA,下降幅度为24%,光谱线宽均压窄至3.5 pm,且分别了实现了9.4 nm和10.5 nm宽度的波长调谐。实验结果表明,采用反射式全息光栅的Littrow结构用于半导体 器,极大地改善了半导体 器的性能。

  • 图 1实验装置示意图

    Figure 1.Schematic diagram of experiment setup

    图 2(a)自由运行的LD的P-I特性曲线;(b)不同注入电流下的光谱特性

    Figure 2.(a) P-I characteristic curve of the free-running diode laser; (b) spectral characteristics at different currents

    图 3(a)光栅外腔半导体 器的P-I特性曲线;(b)2400 l/mm及(c) 1800 l/mm全息光栅外腔 器在不同电流下的光谱特性

    Figure 3.(a) P-I characteristic curve of the grating external cavity diode laser; spectral characteristic of (b) 2400 l/mm and (c) 1800 l/mm holographic grating external cavity laser at different currents

    图 4(a)波长调谐范围随注入电流的变化情况;当注入电流为70 mA时(b)2400 l/mm及(c) 1800 l/mm全息光栅外腔 器归一化光谱图

    Figure 4.(a) Wavelength tuning range versus injection current; normalized emission spectra of (b) 2400 l/mm and (c) 1800 l/mm holographic grating external cavity lasers with injection current of 70 mA

    图 5两种不同刻线密度下光栅外腔半导体 器阈值电流随激射波长的变化

    Figure 5.Threshold current versus lasing wavelength for grating external cavity diode laser with different line densities

    图 6120 mA注入电流下光栅外腔半导体 器输出功率随激射波长的变化情况

    Figure 6.Output power of grating external cavity diode laser versus lasing wavelength with injection current of 120 mA

    图 7光栅外腔半导体 器的输出功率稳定性测试结果

    Figure 7.Output power stability of the grating external cavity diode laser

    图 8120 mA注入电流下光栅外腔半导体 器的输出光谱特性

    Figure 8.Spectral characteristic of the grating external cavity diode laser with injection current of 120 mA

    图 9外腔 器的波长及线宽稳定性测试结果

    Figure 9.Wavelength stability and line width stability of the external cavity laser

    表 12400 l/mm 全息光栅外腔 器与638 nm半导体 器参数性能对比结果

    Table 1.Performance comparison of 2400 l/mm holographic grating external cavity laser and 638 nm semiconductor laser

    Thresholdcurrent/
    mA
    Output power/
    mW(120mA injection current)
    Line
    width/
    nm
    Wavelength tuning range/
    nm
    Diode laser 60 50.6 1.8 3
    Diode laser with grating external cavity 51 45.2 0.0035 10
    下载: 导出CSV
  • [1] LI F Q, YABLON J, VELTEN A,et al. High-depth-resolution range imaging with multiple-wavelength superheterodyne interferometry using 1550-nm lasers[J].Applied Optics, 2017, 56(31): H51-H56.doi:10.1364/AO.56.000H51
    [2] ELIA A, LUGARÀ P M, DI FRANCO C,et al. Photoacoustic techniques for trace gas sensing based on semiconductor laser sources[J].Sensors, 2009, 9(12): 9616-9628.doi:10.3390/s91209616
    [3] LANG X K, JIA P, CHEN Y Y,et al. Advances in narrow linewidth diode lasers[J].Science China Information Sciences, 2019, 62(6): 61401.doi:10.1007/s11432-019-9870-0
    [4] PABC EUF D, HASTIE J E. Tunable narrow linewidth AlGaInP semiconductor disk laser for Sr atom cooling applications[J].Applied Optics, 2016, 55(19): 4980-4984.doi:10.1364/AO.55.004980
    [5] YANG X X, YIN Y N, LI X J,et al. External cavity diode laser as a stable-frequency light source for application in laser cooling of molecules[J].Chinese Optics Letters, 2016, 14(7): 071403.doi:10.3788/COL201614.071403
    [6] 高颖, 戴连奎, 朱华东, 等. 基于拉曼光谱的天然气主要组分定量分析[J]. 分析化学,2019,47(1):67-76.

    GAO Y, DAI L K, ZHU H D,et al. Quantitative analysis of main components of natural gas based on Raman spectroscopy[J].Chinese Journal of Analytical Chemistry, 2019, 47(1): 67-76. (in Chinese)
    [7] 刘洋, 张天舒, 赵雪松, 等. 高精度测温拉曼 雷达光谱仪的光学设计[J]. 光学 精密工程,2018,26(8):1904-1909.doi:10.3788/OPE.20182608.1904

    LIU Y, ZHANG T SH, ZHAO X S,et al. Optical design and analysis of laser radar spectrometer with high accuracy[J].Optics and Precision Engineering, 2018, 26(8): 1904-1909. (in Chinese)doi:10.3788/OPE.20182608.1904
    [8] 刘庆省, 郭金家, 杨德旺, 等. 小型高灵敏度水下拉曼光谱系统[J]. 光学 精密工程,2018,26(1):8-13.doi:10.3788/OPE.20182601.0008

    LIU Q X, GUO J J, YANG D W,et al. A compact underwater Raman spectroscopy system with high sensitivity[J].Optics and Precision Engineering, 2018, 26(1): 8-13. (in Chinese)doi:10.3788/OPE.20182601.0008
    [9] WANG W B, MAJOR A, PALIWAL J. Grating-stabilized external cavity diode lasers for Raman spectroscopy—a review[J].Applied Spectroscopy Reviews, 2012, 47(2): 116-143.doi:10.1080/05704928.2011.631649
    [10] 刘燕德, 靳昙昙, 王海阳. 基于拉曼光谱的三组分食用调和油快速定量检测[J]. 光学 精密工程,2015,23(9):2490-2496.doi:10.3788/OPE.20152309.2490

    LIU Y D, JIN T T, WANG H Y. Rapid quantitative determination of components in ternary blended edible oil based on Raman spectroscopy[J].Optics and Precision Engineering, 2015, 23(9): 2490-2496. (in Chinese)doi:10.3788/OPE.20152309.2490
    [11] ZRIMSEK A B, CHIANG N, MATTEI M,et al. Single-molecule chemistry with surface-and tip-enhanced Raman spectroscopy[J].Chemical Reviews, 2017, 117(11): 7583-7613.doi:10.1021/acs.chemrev.6b00552
    [12] PITTS W M. Carbon monoxide concentration measurements in fuel cell environments using Tunable Diode Laser Absorption Spectroscopy (TDLAS): an assessment[R]. 2017.
    [13] CHOI D W, JEON M G, CHO G R,et al. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)[J].Journal of Thermal Science, 2016, 25(1): 84-89.doi:10.1007/s11630-016-0837-z
    [14] 贾良权, 祁亨年, 胡文军, 等. 种子呼吸CO2浓度检测系统[J]. 光学 精密工程,2019,27(6):1397-1404.doi:10.3788/OPE.20192706.1397

    JIA L Q, QI H N, HU W J,et al. CO2concentration detection system for seed respiration[J].Optics and Precision Engineering, 2019, 27(6): 1397-1404. (in Chinese)doi:10.3788/OPE.20192706.1397
    [15] 李春光, 董磊, 王一丁, 等. 基于TDLAS和ICL的紧凑中红外痕量气体探测系统[J]. 光学 精密工程,2018,26(8):1855-1861.doi:10.3788/OPE.20182608.1855

    LI CH G, DONG L, WANG Y D,et al. Compact mid-infrared trace gas detection system based on TDLAS and ICL[J].Optics and Precision Engineering, 2018, 26(8): 1855-1861. (in Chinese)doi:10.3788/OPE.20182608.1855
    [16] 龙睿, 王海龙, 成若海, 等. 外腔反馈对量子点 器输出特性的影响[J]. 发光学报,2013,34(4):474-479.doi:10.3788/fgxb20133404.0474

    LONG R, WANG H L, CHENG R H,et al. Influence of external cavity feedback on the output characteristics of quantum-dot lasers[J].Chinese Journal of Luminescence, 2013, 34(4): 474-479. (in Chinese)doi:10.3788/fgxb20133404.0474
    [17] 刘荣战, 薄报学, 么娜, 等. 体布拉格光栅外腔红光半导体 器实验研究[J]. 发光学报,2019,40(11):1401-1408.doi:10.3788/fgxb20194011.1401

    LIU R ZH, BO B X, YAO N,et al. Experimental research on volume-Bragg-grating external cavity red-light semiconductor lasers[J].Chinese Journal of Luminescence, 2019, 40(11): 1401-1408. (in Chinese)doi:10.3788/fgxb20194011.1401
    [18] GUO H P, OLAMAX G T. Analysis of no mode-hop tuning of mirror-grating external-cavity diode laser[J].Optics Communications, 2018, 421: 90-93.doi:10.1016/j.optcom.2018.03.074
    [19] 田景玉, 张俊, 彭航宇, 等. 用于碱金属蒸汽 器泵浦的窄线宽780 nm半导体 源[J]. 发光学报,2019,40(9):1123-1129.doi:10.3788/fgxb20194009.1123

    TIAN J Y, ZHANG J, PENG H Y,et al. 780 nm diode laser source with narrow linewidth for alkali metal vapor laser pumping[J].Chinese Journal of Luminescence, 2019, 40(9): 1123-1129. (in Chinese)doi:10.3788/fgxb20194009.1123
    [20] DING D, LV W L, LV X Q,et al. Influence of grating parameters on the performance of a high-power blue external-cavity semiconductor laser[J].Applied Optics, 2018, 57(7): 1589-1593.doi:10.1364/AO.57.001589
    [21] 郭海平, 万辰皓, 许成文, 等. 外腔半导体 器动态模稳定性的研究[J]. 技术,2016,40(5):706-710.doi:10.7510/jgjs.issn.1001-3806.2016.05.018

    GUO H P, WAN CH H, XU CH W,et al. Study on dynamic mode stability of external cavity diode lasers[J].Laser Technology, 2016, 40(5): 706-710. (in Chinese)doi:10.7510/jgjs.issn.1001-3806.2016.05.018
    [22] HONG W X. Design and characterization of a littrow configuration external cavity diode laser[EB/OL].http://web.mit.edu/RSI/compendium/edit2004/Final/hong-wenxian-caltech-both.pdf.
    [23] 金杰, 郭曙光, 吕福云, 等. 外腔半导体 器的实验研究[J]. 南开大学学报(自然科学),2002,35(4):56-59.

    JIN J, GUO SH G, LU F Y,et al. Study of external cavity semiconductor laser[J].Acta Scientiarum Naturalium Universitatis Nankaiensis, 2002, 35(4): 56-59. (in Chinese)
    [24] 李斌, 涂嫔, 徐勇跃, 等. 405nm波段光栅外腔窄线宽蓝紫光半导体 器[J]. 与光电子学进展,2015,52(3):031404.

    LI B, TU P, XU Y Y,et al. Narrow linewidth diode laser with grating external cavity in 405 nm band[J].Laser&Optoelectronics Progress, 2015, 52(3): 031404. (in Chinese)
    [25] 陈少伟, 吕雪芹, 张江勇, 等. 蓝紫光宽带可调谐光栅外腔半导体 器[J]. 与光电子学进展,2013,50(11):111405.

    CHEN SH W, LÜ X Q, ZHANG J Y,et al. Blue-violet broadly tunable grating-coupled external cavity semiconductor laser[J].Laser&Optoelectronics Progress, 2013, 50(11): 111405. (in Chinese)
    [26] 荣春朝, 严进一, 龚谦. Littman结构的平移透镜外腔半导体 器[J]. 杂志,2017,38(6):1-3.

    RONG CH CH, YAN J Y, GONG Q. Shift lens external cavity semiconductor lasers of Littman configuration[J].Laser Journal, 2017, 38(6): 1-3. (in Chinese)
    [27] 周长帅, 王海龙, 龚谦, 等. 基于光栅相移效应的Littrow 器的无跳模调谐[J]. 通信技术,2018,51(5):1045-1049.doi:10.3969/j.issn.1002-0802.2018.05.010

    ZHOU CH SH, WANG H L, GONG Q,et al. Mode-hop-free tuning of Littrow lasers based on grating phase-shift effect[J].Communications Technology, 2018, 51(5): 1045-1049. (in Chinese)doi:10.3969/j.issn.1002-0802.2018.05.010
  • 加载中
图(10)/ 表(1)
计量
  • 文章访问数:1835
  • HTML全文浏览量:497
  • PDF下载量:148
  • 被引次数:0
出版历程
  • 收稿日期:2019-12-27
  • 修回日期:2020-02-22
  • 网络出版日期:2020-11-10
  • 刊出日期:2020-12-01

目录

    /

      返回文章
      返回
        Baidu
        map