留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全自动推扫式高光谱显微成像系统设计与研究

唐凌宇,葛明锋,董文飞

downloadPDF
唐凌宇, 葛明锋, 董文飞. 全自动推扫式高光谱显微成像系统设计与研究[J]. , 2021, 14(6): 1486-1494. doi: 10.37188/CO.2021-0040
引用本文: 唐凌宇, 葛明锋, 董文飞. 全自动推扫式高光谱显微成像系统设计与研究[J]. , 2021, 14(6): 1486-1494.doi:10.37188/CO.2021-0040
TANG Ling-yu, GE Ming-feng, DONG Wen-fei. Design and research of fully automatic push-broom hyperspectral microscopic imaging system[J]. Chinese Optics, 2021, 14(6): 1486-1494. doi: 10.37188/CO.2021-0040
Citation: TANG Ling-yu, GE Ming-feng, DONG Wen-fei. Design and research of fully automatic push-broom hyperspectral microscopic imaging system[J].Chinese Optics, 2021, 14(6): 1486-1494.doi:10.37188/CO.2021-0040

全自动推扫式高光谱显微成像系统设计与研究

doi:10.37188/CO.2021-0040
基金项目:国家重点研发计划(No. 2017YFF0108600);中国科学院仪器设备研制项目(No. YJKYYQ20200038);江苏省重点研发计划(社会发展No. BE2019683);济南市“高校20条”资助项目(No. 2018GXRC016)
详细信息
    作者简介:

    唐凌宇(1997—),女,黑龙江绥化人,硕士研究生,主要从事机械工程等方面的研究。E-mail:tangly9996@163.com

    葛明锋(1987—),男,江苏南通人,博士,副研究员,硕士生导师,主要从事高光谱、荧光显微成像方面研究。E-mail:gemf@sibet.ac.cn

  • 中图分类号:TH742

Design and research of fully automatic push-broom hyperspectral microscopic imaging system

Funds:Supported by National Key R&D Program of China (No. 2017YFF0108600); Supported by the Scientific Instrument Developing Project of the Chinese Academy of Sciences (No.YJKYYQ20200038); Primary Research & Developement Plan of Jiangsu Province(Social Development No. BE2019683); The Science and Technology Department of Jinan City (No. 2018GXRC016)
More Information
  • 摘要:为了将光谱成像技术更方便地引入显微成像领域,本文将高光谱成像技术与显微成像技术相结合,搭建出一套全自动推扫式高光谱显微成像系统。系统以倒置显微镜为主体进行设计,采用棱镜-光栅元件进行光谱分光,利用高精度二维电动运动平台进行推扫,同时结合电动对焦组件完成对焦,最后成像在高灵敏sCMOS科学相机上。根据大多数生物样本光谱检测需求,系统的光谱范围选择420~800 nm。经光谱定标和空间分辨率测试,确定系统的光谱采样率为2.06 nm,光谱分辨率均值优于3.5 nm,空间分辨率优于0.87 μm。系统引入 自动对焦系统作为主动对焦模块,以HE染色的乳腺癌病理切片为研究对象,实验分别采用被动对焦和主动对焦方式进行推扫成像,并比较分析两种方式的优劣,认为两者均可以满足大视场成像需求,但主动对焦成像更快速、更清晰,更加适合推扫式高光谱显微成像系统。通过对全自动推扫式高光谱显微成像系统的设计与研究,解决了高光谱显微成像中无法实时对焦的难题,实现了40倍显微物镜下3.25 mm×3.25 mm范围内全自动成像,有利于促进光谱技术在生物医学等领域中的应用。

  • 图 1推扫式高光谱显微成像系统示意图

    Figure 1.Schematic diagram of push-broom hyperspectral microscopic imaging system

    图 2棱镜-光栅分光原理图

    Figure 2.Prism grating spectroscopic schematic diagram

    图 3整机照片

    Figure 3.Photos of the whole machine

    图 4光谱定标结果

    Figure 4.Results of spectral calibration

    图 5分辨率板推扫图像

    Figure 5.Push-broom image of the resolution testing board

    图 6空间分辨率测试结果

    Figure 6.Results of spatial resolution test

    图 7基于单帧图像清晰度评价曲线

    Figure 7.Definition evaluation curves based on a single-frame image

    图 8基于推扫图像的清晰度评价曲线

    Figure 8.Definition evaluation curves based on the push-broom image

    图 9X轴4个采样点对焦位置插值结果

    Figure 9.Interpolation results of focusing positions of four sampling points on theX-axis

    图 10二维平面插值结果

    Figure 10.Interpolation results on a two-dimensional plane

    图 11推扫路线

    Figure 11.Push-broom route

    图 12基于被动对焦的大视场推扫成像

    Figure 12.Push-broom imaging with a large field of view based on passive focusing

    图 13主动对焦原理示意图

    Figure 13.Schematic diagram of active focusing principle

    图 14基于主动对焦的大视场推扫成像

    Figure 14.Push-broom imaging with a large field of view based on active focusing

    表 1单帧图像和推扫图像清晰度评价的对焦位置

    Table 1.Focus positions for clarity evaluation based on the single-frame image and the push-broom image

    Position/μm Single frame image/μm Push scan image/μm
    0 357 369
    912 376 378
    1700 376 374
    2500 371 367
    下载: 导出CSV

    表 2Z值数据

    Table 2.Zvalue data Z/μm

    Y/μm X/μm
    0 912 1700 2500
    0 369 378 374 371
    912 378 385 380 376
    1700 385 388 385 382
    2500 367 376 375 373
    下载: 导出CSV

    表 3主动对焦推扫图像的对焦位置

    Table 3.Focus position based on active focus push-broom image

    Position /μm Active focus position/μm Push scan image/μm
    0 369 369
    500 376 376.2
    1000 378 377.9
    1500 375 375.7
    2000 371 371.1
    2500 367 367
    下载: 导出CSV
  • [1] SORG B S, MOELLER B J, DONOVAN O,et al. Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development[J].Journal of Biomedical Optics, 2005, 10(4): 44004.doi:10.1117/1.2003369
    [2] LIU K X, LIN S F, ZHU S Q,et al. Hyperspectral microscopy combined with DAPI staining for the identification of hepatic carcinoma cells[J].Biomedical Optics Express, 2021, 12(1): 173-180.doi:10.1364/BOE.412158
    [3] EADY M, PARK B. An unsupervised prediction model for salmonella detection with hyperspectral microscopy: a multi-year validation[J].Applied Sciences, , 2021, 11(3): 895.doi:10.3390/app11030895
    [4] WANG J SH, LI Q L. Quantitative analysis of liver tumors at different stages using microscopic hyperspectral imaging technology[J].Journal of Biomedical Optics, , 2018, 23(10): 106002.
    [5] 肖功海, 舒嵘, 薛永祺. 显微高光谱成像系统的设计[J]. 光学 精密工程,2004,12(4):367-372.

    XIAO G H, SHU R, XUE Y Q. Design of microscopic hyperspectral imaging system[J].Optics and Precision Engineering, 2004, 12(4): 367-372. (in Chinese)
    [6] 李庆利, 薛永祺, 肖功海, 等. 显微高光谱成像的生物组织定量检测机理及方法研究[J]. 科学通报,2008,53(4):493-496.doi:10.3321/j.issn:0023-074X.2008.04.018

    LI Q L, XUE Y Q, XIAO G H,et al. Research on the mechanism and method of biological tissue quantitative detection based on micro-hyperspectral imaging[J].Chinese Science Bulletin, 2008, 53(4): 493-496. (in Chinese)doi:10.3321/j.issn:0023-074X.2008.04.018
    [7] ORTEGA S, GUERRA R, DÍAZ M,et al. Hyperspectral push-broom microscope development and characterization[J].IEEE Access, 2019, 7: 122473-122491.doi:10.1109/ACCESS.2019.2937729
    [8] ORTEGA S, FABELO H, CAMACHO R,et al. Detecting brain tumor in pathological slides using hyperspectral imaging[J].Biomedical Optics Express, 2018, 9(2): 818-831.doi:10.1364/BOE.9.000818
    [9] PU H B, LIN L, SUN D W. Principles of hyperspectral microscope imaging techniques and their applications in food quality and safety detection: a review[J].Comprehensive Reviews in Food Science and Food Safety, 2019, 18(4): 853-866.doi:10.1111/1541-4337.12432
    [10] SELJEBOTN S T. Continuous autofocus for line scanning hyperspectral camera[D]. Trondheim: Norwegian University of Science and Technology, 2012.
    [11] 张佳伦, 郑玉权, 蔺超, 等. 消像散的自由曲面棱镜光谱仪光学系统设计[J]. 中国光学,2020,13(4):842-851.doi:10.37188/CO.2019-0049

    ZHANG J L, ZHENG Y Q, LIN C,et al. Design of a freeform curved prism imaging spectrometer based on an anastigmatism[J].Chinese Optics, 2020, 13(4): 842-851. (in Chinese)doi:10.37188/CO.2019-0049
    [12] 张天一, 朱永田, 侯永辉, 等. LAMOST高分辨率光谱仪研制[J]. 中国光学,2019,12(1):148-155.doi:10.3788/co.20191201.0148

    ZHANG T Y, ZHU Y T, HOU Y H,et al. Construction of a LAMOST high resolution spectrograph[J].Chinese Optics, 2019, 12(1): 148-155. (in Chinese)doi:10.3788/co.20191201.0148
    [13] 魏巍, 崔继承, 唐玉国, 等. 医用显微成像光谱仪的光谱定标技术[J]. 光学 精密工程,2016,24(5):1015-1020.doi:10.3788/OPE.20162405.1015

    WEI W, CUI J CH, TANG Y G,et al. Spectral calibration of medical microscopic imaging spectrometer[J].Optics and Precision Engineering, 2016, 24(5): 1015-1020. (in Chinese)doi:10.3788/OPE.20162405.1015
    [14] 迟明波, 韩欣欣, 徐阳, 等. 宽谱段高分辨扫描光谱定标技术[J]. 中国光学,2020,13(2):249-257.doi:10.3788/co.20201302.0249

    CHI M B, HAN X X, XU Y,et al. Broad band and high resolution scanning spectrum calibration technology[J].Chinese Optics, 2020, 13(2): 249-257. (in Chinese)doi:10.3788/co.20201302.0249
  • 加载中
图(14)/ 表(3)
计量
  • 文章访问数:1228
  • HTML全文浏览量:421
  • PDF下载量:137
  • 被引次数:0
出版历程
  • 收稿日期:2021-02-19
  • 修回日期:2021-03-15
  • 网络出版日期:2021-06-02
  • 刊出日期:2021-11-19

目录

    /

      返回文章
      返回
        Baidu
        map