-
摘要:为获得火焰燃烧过程中的黑体辐射与特征自由基发出的紫外辐射信息,实现对火焰温度与燃料成分的定量分析,本文设计了分孔径紫外多波段成像系统。该系统由前置分孔径光路与后置合像光路两部分组成,选择熔融石英和氟化钙为透镜材料。通过在各个分孔径光路内放置滤光片的方式,将目标在240~280 nm、308 nm、300~360 nm、390 nm 4个不同波段的紫外辐射同时成像到紫外探测器的4个区域上。该系统的 F数为2.85,视场角为10°,总长为277.2 mm。分孔径光路的入瞳直径为10 mm,单通道焦距为43.88 mm,调制传递函数(MTF)接近衍射极限。合像光路边缘物面的MTF值在45 lp/mm处达到0.45。将两者组合优化后,总系统在45 lp/mm处各通道的MTF值均在0.5以上。对系统的各项公差进行了蒙特卡罗分析,结果表明有20%以上的良品率,该系统适合于科研加工装配,具有实用价值。Abstract:Ultraviolet radiation of characteristic free radicals and blackbody radiation in combustion flames is essential to the quantitative analysis of flame temperature and fuel composition. An aperture-divided ultraviolet multiband imaging optical system is designed, which consists of an aperture-divided system and an image-combined system. The lens materials are fused silica and calcium fluoride. By placing multiband ultraviolet filters in each divided channel, the combustion flame can be imaged on the detector’s four regions with four ultraviolet bands, including 240~280 nm, 308 nm, 300~360 nm, and 390 nm. The parameters of the system are: a 2.85 F-number, a 10° field-of-view, and a 277.2 mm total length. The entrance pupil diameter of the aperture-divided system is 10 mm, and the single-channel focal length is 43.88 mm. The Modulation Transfer Function (MTF) is close to the diffraction limit. The MTF value of the object surface at the edge of the image-combined system reaches 0.45 at 45 lp/mm. After optimizing the combination of the two parts, the MTF value of the total system surpassed 0.5 at 45 lp/mm in Nyquist frequency. Monte Carlo analysis on the tolerances gives a yield rate of more than 20%. The results show that this system is suitable for research and has practical value.
-
图 13原理性实验结果。(a) 240~280 nm;(b) 308 nm;(c) 300~360 nm;(d) 390 nm;(e) 200~1000 nm;(f) 308 nm和390 nm图像的亮区域分别赋予黄色和绿色后叠加到带通300~360 nm图像的效果图
Figure 13.Principle experiment results. (a) 240~280 nm; (b) 308 nm; (c) 300~360 nm; (d) 390 nm; (e) 200~1000 nm; (f) the results of fusing the 300~360 nm image with bright regions from the 308 nm and 390 nm images, which are rendered as yellow and green, respectively
表 1光学系统公差
Table 1.Optical system tolerance
表面公差 元件公差 折射率公差 半径/mm 厚度/mm S+A不规则度 X偏心/mm Y偏心/mm 倾斜X轴/(°) 倾斜Y轴/(°) 折射率 阿贝数(%) 0.01 0.05 0.2 0.05 0.05 0.03 0.03 0.0001 0.1 表 2公差分析结果
Table 2.Results of tolerance analysis
通道/nm MTF(45 lp/mm处) 均值 50%结果均值大于值 20%结果均值大于值 240~280 nm 0.60866474 0.21842692 0.33126676 308 nm 0.89469395 0.39217021 0.55969416 300~360 nm 0.72324470 0.27994123 0.41906491 390 nm 0.77810788 0.34970794 0.44755679 -
[1] 宋旭东, 郭庆华, 龚岩, 等. 气流床撞击流水煤浆气化火焰光谱辐射特性实验研究[J]. 光谱学与光谱分析,2020,40(2):465-471.SONG X D, GUO Q H, GONG Y,et al. Chemiluminescence characteristics of coal-water slurry impinging flames in bench-scale entrained flow gasifier[J].Spectroscopy and Spectral Analysis, 2020, 40(2): 465-471. (in Chinese) [2] 张磊, 陈绍武, 赵海川, 等. 基于光电探测的多光谱测温装置[J]. 中国光学,2019,12(2):289-293.doi:10.3788/co.20191202.0289ZHANG L, CHEN SH W, ZHAO H CH,et al. Multi-spectral temperature measuring system based on photoelectric detection[J].Chinese Optics, 2019, 12(2): 289-293. (in Chinese)doi:10.3788/co.20191202.0289 [3] KRABICKA J, LU G, YAN Y. Profiling and characterization of flame radicals by combining spectroscopic imaging and neural network techniques[J].IEEE Transactions on Instrumentation and Measurement, 2011, 60(5): 1854-1860.doi:10.1109/TIM.2010.2102411 [4] 周莹, 白永辉, 宋旭东, 等. 自由基的化学发光特性在火焰光谱诊断的应用综述[J]. 光谱学与光谱分析,2020,40(11):3358-3364.ZHOU Y, BAI Y H, SONG X D,et al. Application of chemiluminescence in spectral diagnosis: a review[J].Spectroscopy and Spectral Analysis, 2020, 40(11): 3358-3364. (in Chinese) [5] 韩培仙, 任戈, 刘永, 等. 可见/中波双波段共口径光学系统设计[J]. 应用光学,2020,41(3):435-440.doi:10.5768/JAO202041.0301001HAN P X, REN G, LIU Y,et al. Optical design of VIS/MWIR dual-band common-aperture system[J].Journal of Applied Optics, 2020, 41(3): 435-440. (in Chinese)doi:10.5768/JAO202041.0301001 [6] 韩仲志, 万剑华, 刘杰, 等. 利用油品紫外荧光特性的多光谱成像检测[J]. 发光学报,2015,36(11):1335-1341.doi:10.3788/fgxb20153611.1335HAN ZH ZH, WAN J H, LIU J,et al. Multispectral imaging detection using the ultraviolet fluorescence characteristics of oil[J].Chinese Journal of Luminescence, 2015, 36(11): 1335-1341. (in Chinese)doi:10.3788/fgxb20153611.1335 [7] 高泽东, 高洪兴, 朱院院, 等. 快照式光谱成像技术综述[J]. 光学 精密工程,2020,28(6):1323-1343.doi:10.3788/OPE.20202806.1323GAO Z D, GAO H X, ZHU Y Y,et al. Review of snapshot spectral imaging technologies[J].Optics and Precision Engineering, 2020, 28(6): 1323-1343. (in Chinese)doi:10.3788/OPE.20202806.1323 [8] 苏永鹏, 谢洪波, 王瑶, 等. 分孔径中波红外多光谱成像光学系统的设计[J]. 应用光学,2018,39(6):767-772.SU Y P, XIE H B, WANG Y,et al. Design of aperture-divided multispectral imaging system in mid-infrared band[J].Journal of Applied Optics, 2018, 39(6): 767-772. (in Chinese) [9] 王琪, 梁静秋, 梁中翥, 等. 分孔径红外偏振成像仪光学系统设计[J]. 中国光学,2018,11(1):92-99.doi:10.3788/co.20181101.0092WANG Q, LIANG J Q, LIANG ZH ZH,et al. Design of decentered aperture-divided optical system of infrared polarization imager[J].Chinese Optics, 2018, 11(1): 92-99. (in Chinese)doi:10.3788/co.20181101.0092 [10] 万钇良. 红外分孔径偏振成像技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019.WAN Y L. Study on infrared split-aperture polarization imaging technology[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2019. (in Chinese). [11] 陈阳, 刘钧, 岳宝毅. 基于孔径/视场分割的红外复眼接收系统设计[J]. 与红外,2019,49(4):454-459.doi:10.3969/j.issn.1001-5078.2019.04.011CHEN Y, LIU J, YUE B Y. Design of infrared compound eye receiving system based on aperture /field segmentation[J].Laser&Infrared, 2019, 49(4): 454-459. (in Chinese)doi:10.3969/j.issn.1001-5078.2019.04.011 [12] 李西杰, 刘钧, 邹纯博, 等. 双波段共口径同时偏振光学系统设计[J]. 西安工业大学学报,2020,40(1):25-31.LI X J, LIU J, ZOU CH B,et al. Design of dual-band optical system with shared-aperture and complete polarization[J].Journal of Xi'an Technological University, 2020, 40(1): 25-31. (in Chinese) [13] 中国科学院西安光学精密机械研究所. 会聚光分孔径多光谱成像光学系统: 中国, 110631701A[P]. 2019-12-31.Xi’an Institute Optics & Precision Mechanics CAS. Convergent light sub-aperture multispectral imaging optical system: CN, 110631701A[P]. 2019-12-31. (in Chinese). [14] CARLES G, BABINGTON J, WOOD A,et al. Superimposed multi-resolution imaging[J].Optics Express, 2017, 25(26): 33043-33055.doi:10.1364/OE.25.033043 [15] 李芸. 紧凑型分孔径快照式光谱成像系统研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2018.LI Y. Research on the compact division-aperture snapshot spectral imaging system[D]. Xi’an: University of Chinese Academy of Sciences (Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences), 2018. (in Chinese). [16] 胡凯丰. 仿生多孔径系统超分辨成像研究[D]. 长春: 吉林大学, 2020.HU K F. Research on super-resolution imaging system with bionic muti-apertures[D]. Changchun: Jilin University, 2020. (in Chinese). [17] 张猛蛟, 蔡毅, 江峰, 等. 紫外增强硅基成像探测器进展[J]. 中国光学,2019,12(1):19-37.doi:10.3788/co.20191201.0019ZHANG M J, CAI Y, JIANG F,et al. Silicon-based ultraviolet photodetection: progress and prospects[J].Chinese Optics, 2019, 12(1): 19-37. (in Chinese)doi:10.3788/co.20191201.0019 [18] 朱晓秀, 葛咏, 李建军, 等. 量子点增强硅基探测成像器件的研究进展[J]. 中国光学,2020,13(1):62-74.doi:10.3788/co.20201301.0062ZHU X X, GE Y, LI J J,et al. Research progress of quantum dot enhanced silicon-based photodetectors[J].Chinese Optics, 2020, 13(1): 62-74. (in Chinese)doi:10.3788/co.20201301.0062 [19] 何磊, 龚岩, 郭庆华, 等. 甲烷/氧气层流同轴射流扩散火焰OH*自由基的数值研究[J]. 光谱学与光谱分析,2018,38(3):685-691.HE L, GONG Y, GUO Q H,et al. Numerical study on OH*radicals in the laminar methane/oxygen Co-flowing jet diffusion flame[J].Spectroscopy and Spectral Analysis, 2018, 38(3): 685-691. (in Chinese) [20] LAMOUREUX N, EL MERHUBI H, GASNOT L,et al. Measurements and modelling of HCN and CN species profiles in laminar CH4/O2/N2low pressure flames using LIF/CRDS techniques[J].Proceedings of the Combustion Institute, 2015, 35(1): 745-752.doi:10.1016/j.proci.2014.05.126