留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于透镜阵列的三维姿态角度测量

杜明鑫,闫钰锋,张燃,才存良,于信,白素平,于洋

downloadPDF
杜明鑫, 闫钰锋, 张燃, 才存良, 于信, 白素平, 于洋. 基于透镜阵列的三维姿态角度测量[J]. , 2022, 15(1): 45-55. doi: 10.37188/CO.2021-0129
引用本文: 杜明鑫, 闫钰锋, 张燃, 才存良, 于信, 白素平, 于洋. 基于透镜阵列的三维姿态角度测量[J]. , 2022, 15(1): 45-55.doi:10.37188/CO.2021-0129
DU Ming-xin, YAN Yu-feng, ZHANG Ran, CAI Cun-liang, YU Xin, BAI Su-ping, YU Yang. 3D position angle measurement based on a lens array[J]. Chinese Optics, 2022, 15(1): 45-55. doi: 10.37188/CO.2021-0129
Citation: DU Ming-xin, YAN Yu-feng, ZHANG Ran, CAI Cun-liang, YU Xin, BAI Su-ping, YU Yang. 3D position angle measurement based on a lens array[J].Chinese Optics, 2022, 15(1): 45-55.doi:10.37188/CO.2021-0129

基于透镜阵列的三维姿态角度测量

doi:10.37188/CO.2021-0129
基金项目:吉林省教育厅“十三五”科学技术项目(No. JJKH20200756KJ);吉林省科技发展计划项目(No. 20200401054GX);长春理工大学青年基金(No. XQNJJ-2019-01)
详细信息
    作者简介:

    杜明鑫(1995—),男,河北承德人,硕士研究生,2019年于长春理工大学光电信息学院获得学士学位,目前研究方向包括光机结构设计、误差分析、光电检测技术。E-mail:1146816493@qq.com

    闫钰锋(1978—),男,吉林辽源人,工学博士,教授,博士生导师,2010年于长春理工大学测试计量技术与仪器专业获得博士学位,目前的研究方向包括光机结构设计、光电检测技术、仪器精度分析、光学测量。E-mail:yanyufeng@cust.edu.cn

  • 中图分类号:TP394.1;TH691.9

3D position angle measurement based on a lens array

Funds:Supported by “13th Five-Year” Science and Technology Project of Education Department of Jilin Province (No. JJKH20200756KJ); Science and Technology Development Project of Jilin Province (No. 20200401054GX); Youth Fund of Changchun University of Science and Technology (No. XQNJJ-2019-01)
More Information
  • 摘要:三维姿态角的精确测量在航空、航天、国防等领域应用广泛,为方便准确地实现三维姿态角的测量,本文设计了一种基于透镜阵列的测量系统,并建立了微小三维姿态角测量分析模型。系统中,准直平行光束通过4个排列成金字塔形的阵列透镜,在CCD上形成规则分布的阵列光斑。通过分析CCD成像光斑间的距离、透镜阵列上相邻孔径之间的距离以及透镜阵列与CCD之间的倾斜角,可以得到光束相对于接收系统俯仰角和偏摆角,利用阵列光斑连线相对水平或垂直面的夹角,可同时得到绕 Z轴的滚转角。通过与高精度自准直仪测量结果进行比较,证明所提方法的测量精度可以达到 RMS≤0.1″,表明该方法能够实现三维姿态角的测量。

  • 图 1系统结构示意图。(a)应用系统结构示意图;(b)系统原理结构示意图

    Figure 1.Schematic diagram of the proposed system. (a)Structure diagram of application system; (b)structure diagram of system principle

    图 2入射光的示意图。(a)向上的入射光线,(b)向下的入射光线

    Figure 2.Schematic diagram of the incident light. (a) Upward incident light; (b) downward incident light

    图 3扭转角示意图。(a)扭转角为0时的斑点示意图;(b)扭转角为 $ \gamma $ 时的斑点示意图

    Figure 3.Schematic diagram for the torsion angle. (a) The spots′ schematic diagram when the torsion angle is 0; (b) the spots′ schematic diagram when the torsion angle is $\gamma $

    图 4透镜阵列的实物图和模拟图。(a)透镜阵列实物图;(b)透镜阵列尺寸图;(c)透镜阵列俯视图;(d)透镜阵列侧视图

    Figure 4.Physical picture and simulation charts of the lens array. (a) Physical picture of the lens array; (b) size of the lens array; (c) top view of the lens array; (d) side view of the lens array

    图 5实验装置图

    Figure 5.Experimental set-up

    图 6第7组光斑图

    Figure 6.The seventh group of light spots

    图 7相邻光斑拟合曲线

    Figure 7.Fitting of adjacent spots

    图 8不同βy值时的光斑阵列图像。(a)βy= 250″;(b)βy= 500″

    Figure 8.Spot array images with differentβywhenβx= 0; (a)βy= 250″;(b)βy= 500″

    图 9Y方向的测量结果。(a) 质心间距随βy变化的曲线;(b) 与自准直仪相比的误差曲线

    Figure 9.Measurement results in theYdirection. (a) Centroid spacing changing withβy; (b) error curves in comparison with autocollimators

    图 10βx值不同时的光斑阵列图像。(a)βx= 250″;(b)βx= 500″

    Figure 10.Spot array image with differentβx. whenβy= 0. (a)βx= 250″; (b)βx= 500″

    图 11X方向的测量结果。(a) 中心点间距随βx变化的曲线;(b) 与自准直仪相比较的误差曲线

    Figure 11.Measurement results in theXdirection. (a) Centroid spacing changing withβx; (b) error curves in comparison with autocollimators

    图 12中心点随Z方向倾角变化曲线

    Figure 12.Curve of centroid varying with inclination angle in theZdirection

    图 13自动准直仪的对比度误差和XY方向的光斑间距

    Figure 13.Contrast error compared with the results measured with autocollimator and spot spacing inXandYdirections

  • [1] RAJ A A B, SELVI A J V, DURAI K D,et al. Intensity feedback-based beam wandering mitigation in free-space optical communication using neural control technique[J].EURASIP Journal on Wireless Communications and Networking, 2014, 2014(1): 160.doi:10.1186/1687-1499-2014-160
    [2] BAI SH, WANG J Y, QIANG J,et al. Predictive filtering-based fast reacquisition approach for space-borne acquisition, tracking, and pointing systems[J].Optics Express, 2014, 22(22): 26462-26475.doi:10.1364/OE.22.026462
    [3] HSIEH T H, CHEN P Y, JYWE W Y,et al. A geometric error measurement system for linear guideway assembly and calibration[J].Applied Sciences(Switzerland) , 2019, 9(3): 574.doi:10.3390/app9030574
    [4] HU P H, YU CH W, FAN K CH,et al. Error averaging effect in parallel mechanism coordinate measuring machine[J].Applied Sciences, 2016, 6(12): 383.doi:10.3390/app6120383
    [5] SCHERFF M L D, NUTTER J, FUSS-KAILUWEIT P,et al. Spectral mismatch and solar simulator quality factor in advanced LED solar simulators[J].Japanese Journal of Applied Physics, 2017, 56(8S2): 08MB24.doi:10.7567/JJAP.56.08MB24
    [6] TANG SH ZH, WANG ZH, GAO J M,et al. Influence of tilt on collinear calibration of a laser interferometer[J].Applied Optics, 2013, 52(4): B46-B51.doi:10.1364/AO.52.000B46
    [7] SAITO Y, WEI G, KIYONO S. A micro-angle sensor based on laser autocollimation[J].Proceedings of SPIE, 2005, 6052: 60520Q.doi:10.1117/12.647981
    [8] 廉孟冬, 金伟锋, 居冰峰. 二维光学自准直微角度传感器[J]. 机电工程,2010,27(12):23-26,35.doi:10.3969/j.issn.1001-4551.2010.12.006

    LIAN M D, JIN W F, JU B F. 2D micro-angle sensor based on laser autocollimation[J].Journal of Mechanical&Electrical Engineering, 2010, 27(12): 23-26,35. (in Chinese)doi:10.3969/j.issn.1001-4551.2010.12.006
    [9] HSIEH H L, PAN S W. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements[J].Optics Express, 2015, 23(3): 2451-2465.doi:10.1364/OE.23.002451
    [10] 陈琎, 杨程亮, 穆全全, 等. 基于琼斯矩阵的液晶偏振光栅扭曲角及厚度的测量方法[J]. 液晶与显示,2021,36(5):656-662.doi:10.37188/CJLCD.2020-0336

    CHEN J, YANG CH L, MU Q Q,et al. Method for measuring the twist angle and thickness of liquid crystal polarization grating based on Jones matrix[J].Chinese Journal of Liquid Crystals and Displays, 2021, 36(5): 656-662. (in Chinese)doi:10.37188/CJLCD.2020-0336
    [11] SABATYAN A, HOSEINI S A. Fresnel biprism as a 1D refractive axicon[J].Optik, 2013, 124(21): 5046-5048.doi:10.1016/j.ijleo.2013.03.126
    [12] ZHANG E ZH, CHEN B Y, ZHANG H,et al. Note: comparison experimental results of the laser heterodyne interferometer for angle measurement based on the Faraday effect[J].Review of Scientific Instruments, 2018, 89(4): 046104.doi:10.1063/1.5013630
    [13] WU Y M, CHENG H B, WEN Y F. High-precision rotation angle measurement method based on a lensless digital holographic microscope[J].Applied Optics, 2018, 57(1): 112-118.doi:10.1364/AO.57.000112
    [14] YUAN J H, DAI P, LIANG D,et al. Grid deformation real-time measurement system of ion thruster based on videometrics[J].Applied Sciences, 2019, 9(9): 1759.doi:10.3390/app9091759
    [15] 李娜, 姜志, 王军, 等. 基于Faster R-CNN的仪表识别方法[J]. 液晶与显示,2020,35(12):1291-1298.doi:10.37188/YJYXS20203512.1291

    LI N, JIANG ZH, WANG J,et al. Instrument recognition method based on faster R-CNN[J].Chinese Journal of Liquid Crystals and Displays, 2020, 35(12): 1291-1298. (in Chinese)doi:10.37188/YJYXS20203512.1291
    [16] KONYAKHIN I, SAKHARIYANOVA A M, SMEKHOV A. Investigation vignetting beams in optoelectronic autocollimation angle measurement system[J].Proceedings of SPIE, 2015, 9526: 95260H.
    [17] CHEN Y L, SHIMIZU Y, TAMADA J,et al. Laser autocollimation based on an optical frequency comb for absolute angular position measurement[J].Precision Engineering, 2018, 54: 284-293.doi:10.1016/j.precisioneng.2018.06.005
    [18] 樊华, 曹小文, 李臻赜, 等. 飞秒脉冲 空间光场调控的微透镜阵列制备技术进展[J]. 液晶与显示,2021,36(6):827-840.doi:10.37188/CJLCD.2020-0334

    FAN H, CAO X W, LI ZH Z,et al. Progress in femtosecond laser fabrication of microlens array with spatial light modulators[J].Chinese Journal of Liquid Crystals and Displays, 2021, 36(6): 827-840. (in Chinese)doi:10.37188/CJLCD.2020-0334
    [19] SARKAR S K, BASURAY A, SENGUPTA K. A compound interferometer for angle measurement[J].Optics Communications, 1992, 89(2-4): 153-158.doi:10.1016/0030-4018(92)90150-P
    [20] LI X J, HUI M, ZHAO ZH,et al. Differential computation method used to calibrate the angle-centroid relationship in coaxial reverse Hartmann test[J].Review of Scientific Instruments, 2018, 89(5): 053104.doi:10.1063/1.5021313
    [21] SHAIKH S A, TONELLO A M. Radio source localization in multipath channels using EM lens assisted massive antennas arrays[J].IEEE Access, 2019, 7: 9001-9012.doi:10.1109/ACCESS.2019.2891110
    [22] FUH Y K, LAI ZH H. A fast processing route of aspheric polydimethylsiloxane lenses array (APLA) and optical characterization for smartphone microscopy[J].Optics Communications, 2017, 385: 160-166.doi:10.1016/j.optcom.2016.10.029
    [23] CHANG X F, XU K Y, XIE D,et al. Microforging technique for fabrication of spherical lens array mold[J].The International Journal of Advanced Manufacturing Technology, 2018, 96(9-12): 3843-3850.doi:10.1007/s00170-018-1719-1
    [24] COPPOLA S, PAGLIARULO V, VESPINI V,et al. Direct fabrication of polymer micro-lens array[J].Proceedings of SPIE, 2017, 10329: 103294Q.
    [25] LIU K H, CHEN M F, PAN C T,et al. Fabrication of various dimensions of high fill-factor micro-lens arrays for OLED package[J].Sensors and Actuators A:Physical, 2010, 159(1): 126-134.doi:10.1016/j.sna.2010.02.020
    [26] 吴从均, 颜昌翔, 刘伟. 像差对通信捕获光斑质心的影响分析[J]. 中国 ,2013,40(10):1005004.doi:10.3788/CJL201340.1005004

    WU C J, YAN CH X, LIU W. Analysis of optical aberration impact on acquisition performance[J].Chinese Journal of Lasers, 2013, 40(10): 1005004. (in Chinese)doi:10.3788/CJL201340.1005004
    [27] 张艳艳, 郝晓龙, 陈洁玮. 加门限的一阶矩光斑质心探测方法[J]. 光学技术,2015,41(1):59-63.doi:10.3788/GXJS20154101.0059

    ZANG Y Y, HAO X L, CHEN J W. First moment spot centroid detection with a threshold to compute the centroid[J].Optical Technique, 2015, 41(1): 59-63. (in Chinese)doi:10.3788/GXJS20154101.0059
  • 加载中
图(13)
计量
  • 文章访问数:650
  • HTML全文浏览量:425
  • PDF下载量:129
  • 被引次数:0
出版历程
  • 收稿日期:2021-06-25
  • 修回日期:2021-07-21
  • 网络出版日期:2021-10-20
  • 刊出日期:2022-01-19

目录

    /

      返回文章
      返回
        Baidu
        map