-
摘要:
目前手机摄像头已经具备在空间(
x -y 方向)和深度(z 方向)维度上获取成像信息的能力,而在光谱维度的信息获取上一直停留在RGB三色上,受困于手机平台的尺寸限制,传统的成像光谱仪很难嵌入。本文基于多通道阵列滤光片、微透镜阵列成像和一体化集成制造技术,完成了系统整体设计、关键部件设计制造、整体装配,并实验验证了光谱成像。系统整体物理尺寸小于Φ6×6 mm,光谱分辨率为8 nm,光谱范围为0.53~0.68 μm。实验研究表明,对不同颜色的实物成像,可以获得物体任意部位的光谱曲线,验证了快照式光谱仪的设计指标。该光谱仪具备了嵌入手机的基本条件,此研究有望推动成像光谱仪在手机上集成应用。Abstract:At present, the mobile camera has the ability to obtain imaging information in the space (
x -y direction) and depth (z direction) dimensions while the acquisition of spectral information has been stuck in RGB tricolor. Limited by the size of the mobile platform, the traditional imaging spectrometer is difficult to be embedded. Based on the integrated manufacturing technology of multi-channel array filters, micro-lens array imaging and integration, this paper completes the overall design of the system, the design and manufacture of the key components and overall assembly. The spectral imaging is verified experimentally. The overall physical size of the system is less than Φ6 × 6 mm, the spectral resolution is 8nm, and the spectral range is 0.53−0.68μm. The experimental results show that the spectral curves of any part of the object can be obtained by imaging the object with different colors, which verifies the design index of the snapshot spectrometer. With the basic conditions of embedding the technology into mobile phones, the system is expected to promote the integrated applications of imaging spectrometers.-
Key words:
- imaging spectrometer/
- filter array/
- micro-lens array
-
表 1CMOS的基本参数指标
Table 1.Basic parameters and indicators of CMOS
芯片型号 有效像素 图像区域 最低照度 视频制式 1/3 CMOS 760(H)×586(V) 4.8 mm×3.6 mm 0.008 Lx PAL/NTSC 表 2滤光片性能对比
Table 2.Performance comparison of the filters
表 3紫外胶合剂参数
Table 3.Parameters of the UV adhesive
名称 粘度
25 °C固化后
折射率拉伸极限 弹性模量(PSI) 抗拉强度(PSI) NOV61 300 cps 1.56 38% 150000 3000 表 4胶合基本工艺和参数
Table 4.Basic gluing process and parameters
光源波长 光功率密度 预固化时间 固化时间 点胶设备 365 nm 700 mW/cm2 30 s >10 min 尔谷光电(JZ04-365-04) 表 5成像光谱仪技术指标对比
Table 5.Comparison of technical indexes of the imaging spectrometer
序号 结构 光谱分辨率/nm 时间分辨率 整体尺寸/mm 光谱图像获取方式 报道时间/年 参考文献 1 芯片滤光阵列 10 和CMOS芯片同步 11.2×11.2,不带镜头 直接获取 2014 [27] 2 子孔径复合阵列滤光片 10 计算重构 原理样机平台搭建 计算重建 2019 [31] 3 子孔径复合阵列滤光片 50 计算重构 原理样机平台搭建 计算重建 2004 [32] 4 芯片滤光阵列 10 和CMOS芯片同步 实物样机
约几十mm直接获取 2019 [33] 5 傅立叶变换成像光谱仪 / / 原理设计 计算重构 2020 [8] 6 芯片滤光阵列 计算超分后5.2 nm 计算重构 原理样机平台搭建 计算重构 2021 [22] 7 子孔径复合阵列滤光片 8 和CMOS芯片同步 功能样机Φ6×6 直接获取 2022 本工作 -
[1] 张宏宇, 韩波, 王啸虎, 等. 资源一号02D卫星总体设计与技术特点[J]. 航天器工程,2020,29(6):10-18.doi:10.3969/j.issn.1673-8748.2020.06.002ZHANG H Y, HAN B, WANG X H,et al. System design and technique characteristic of ZY-1-02D satellite[J].Spacecraft Engineering, 2020, 29(6): 10-18. (in Chinese)doi:10.3969/j.issn.1673-8748.2020.06.002 [2] 李娜, 董新丰, 甘甫平, 等. 资源一号02D卫星高光谱数据地质调查应用评价[J]. 航天器工程,2020,29(6):186-191.doi:10.3969/j.issn.1673-8748.2020.06.028LI N, DONG X F, GAN F P,et al. Application evaluation of ZY-1-02D satellite hyperspectral data in geological survey[J].Spacecraft Engineering, 2020, 29(6): 186-191. (in Chinese)doi:10.3969/j.issn.1673-8748.2020.06.028 [3] 王启超, 赵大鹏, 汪家春, 等. 多光谱偏振探测对伪装目标的识别研究[J]. 光电工程,2013,40(3):29-34.WANG Q CH, ZHAO D P, WANG J CH,et al. Recognition of camouflage targets with multi-spectral polarization detection system[J].Opto-Electronic Engineering, 2013, 40(3): 29-34. (in Chinese) [4] 吉海彦, 任占奇, 饶震红. 高光谱成像技术鉴别菠菜叶片农药残留种类[J]. 发光学报,2018,39(12):1778-1784.doi:10.3788/fgxb20183912.1778JI H Y, REN ZH Q, RAO ZH H. Identification of pesticide residue types in spinach leaves based on hyperspectral imaging[J].Chinese Journal of Luminescence, 2018, 39(12): 1778-1784. (in Chinese)doi:10.3788/fgxb20183912.1778 [5] 知科技. 华为P50 Pro摄像头评测: 所有领域的翘楚[EB/OL]. (2021-08-13).https://g.pconline.com.cn/jxwd/1440/14409689.html.ZHIKEJI. Huawei P50 Pro camera evaluation[EB/OL]. (2021-08-13).https://g.pconline.com.cn/jxwd/1440/14409689.html. [6] 北京知行锐景科技有限公司, 优质数码领域创作者. 华为P50 Pocket评测: 理工男搞起情调也是一把好手[EB/OL]. (2021-12-27).https://baijiahao.baidu.com/s?id=1720261076805066815&wfr=spider&for=pc.High quality digital field creator. Huawei P50 pocket evaluation[EB/OL]. (2021-12-27).https://baijiahao.baidu.com/s?id=1720261076805066815&wfr=spider&for=pc. [7] 刘子寒, 季轶群, 石荣宝, 等. 机载红外推扫成像光谱仪光学设计[J]. 红外与 工程,2014,43(9):2941-2946.doi:10.3969/j.issn.1007-2276.2014.09.028LIU Z H, JI Y Q, SHI R B,et al. Optical design of airborne infrared pushbroom imaging spectrometer[J].Infrared and Laser Engineering, 2014, 43(9): 2941-2946. (in Chinese)doi:10.3969/j.issn.1007-2276.2014.09.028 [8] 吕金光, 梁静秋, 王维彪, 等. 微小型快照式傅里叶变换成像光谱仪的建模与分析[J]. 光学学报,2020,40(2):0230001.doi:10.3788/AOS202040.0230001LÜ J G, LIANG J Q, WANG W B,et al. Modeling and analysis of miniature snapshot fourier-transform imaging spectrometer[J].Acta Optica Sinica, 2020, 40(2): 0230001. (in Chinese)doi:10.3788/AOS202040.0230001 [9] 常凌颖, 张强, 邱跃洪. 宽谱段一体化AOTF成像光谱仪光学系统设计[J]. 光学学报,2021,41(7):0722002.doi:10.3788/AOS202141.0722002CHANG L Y, ZHANG Q, QIU Y H. Design of optical system for broadband and integrated AOTF imaging spectrometer[J].Acta Optica Sinica, 2021, 41(7): 0722002. (in Chinese)doi:10.3788/AOS202141.0722002 [10] 裴琳琳, 吕群波, 王建威, 等. 编码孔径成像光谱仪光学系统设计[J]. 物理学报,2014,63(21):210702.doi:10.7498/aps.63.210702PEI L L, LÜ Q B, WANG J W,et al. Optical system design of the coded aperture imaging spectrometer[J].Acta Physica Sinica, 2014, 63(21): 210702. (in Chinese)doi:10.7498/aps.63.210702 [11] 高泽东, 高洪兴, 朱院院, 等. 快照式光谱成像技术综述[J]. 光学 精密工程,2020,28(6):1323-1343.doi:10.3788/OPE.20202806.1323GAO Z D, GAO H X, ZHU Y Y,et al. Review of snapshot spectral imaging technologies[J].Optics and Precision Engineering, 2020, 28(6): 1323-1343. (in Chinese)doi:10.3788/OPE.20202806.1323 [12] 王飞, 余晓畅, 罗青伶, 等. 片上光谱成像系统研究进展及应用综述[J]. 与光电子学进展,2021,58(20):2000002.WANG F, YU X CH, LUO Q L,et al. Research progress and applications of spectral imaging system on chip[J].Laser&Optoelectronics Progress, 2021, 58(20): 2000002. (in Chinese) [13] CHENG Z W, ZHAO Y H, ZHANG J H,et al. Generalized modular spectrometers combining a compact nanobeam microcavity and computational reconstruction[J].ACS Photonics, 2022, 9(1): 74-81.doi:10.1021/acsphotonics.1c00719 [14] WILLIAMS C, GORDON G S D, WILKINSON T D,et al. Grayscale-to-color: scalable fabrication of custom multispectral filter arrays[J].ACS Photonics, 2019, 6(12): 3132-3141.doi:10.1021/acsphotonics.9b01196 [15] 刘嘉楠, 崔继承, 尹禄, 等. 基于微透镜阵列的积分视场成像光谱仪前置成像系统分析与设计[J]. 光谱学与光谱分析,2018,38(10):3269-3272.LIU J N, CUI J CH, YIN L,et al. Analysis and design of pre-imaging system of integral field imaging spectrometer based on lenslet array[J].Spectroscopy and Spectral Analysis, 2018, 38(10): 3269-3272. (in Chinese) [16] HUANG Y T, LI SH J, ZHANG J,et al. Research on surface quality difference of microlens array fabricated by fast tool servo cutting[J].IEEE Photonics Journal, 2021, 13(2): 2500309. [17] HERRERO-BERMELLO A, LI J F, KHAZAEI M,et al. On-chip Fourier-transform spectrometers and machine learning: a new route to smart photonic sensors[J].Optics Letters, 2019, 44(23): 5840-5843.doi:10.1364/OL.44.005840 [18] 余晓畅, 赵建村, 虞益挺. 像素级光学滤波-探测集成器件的研究进展[J]. 光学 精密工程,2019,27(5):999-1012.doi:10.3788/OPE.20192705.0999YU X CH, ZHAO J C, YU Y T,et al. Research progress of pixel-level integrated devices for spectral imaging[J].Optics and Precision on Engineering, 2019, 27(5): 999-1012. (in Chinese)doi:10.3788/OPE.20192705.0999 [19] DUAN Y B, CAI CH L, LIANG H F,et al. Design and preparation of a 6-channel fan-shaped integrated narrow-band filter in the mid-infrared band[J].Coatings, 2019, 9(9): 567.doi:10.3390/coatings9090567 [20] 赵永强, 刘芯羽, 汤超龙. 光谱滤光片阵列进展[J]. 与光电子学进展,2020,57(19):190004.ZHAO Y Q, LIU X Y, TANG CH L. Progress in spectral filter array[J].Laser&Optoelectronics Progress, 2020, 57(19): 190004. (in Chinese) [21] LEE H S, HWANG G W, SEONG T Y,et al. Design of mid-infrared filter array based on plasmonic metal nanodiscs array and its application to on-chip spectrometer[J].Scientific Reports, 2021, 11(1): 12218.doi:10.1038/s41598-021-91762-7 [22] ZHANG W Y, SONG H Y, HE X,et al. Deeply learned broadband encoding stochastic hyperspectral imaging[J].Light:Science&Applications, 2021, 10(1): 108. [23] LIU C C, SUN ZH J. Design and fabrication of a metallic irregular F-P filter array for a miniature spectrometer[J].Applied Optics, 2021, 60(16): 4948-4953.doi:10.1364/AO.424386 [24] XIE Y Q, LIU CH Y, LIU SH,et al. Snapshot imaging spectrometer based on pixel-level filter array (PFA)[J].Sensors, 2021, 21(7): 2289.doi:10.3390/s21072289 [25] 张袆袆. 基于阵列滤光片的红外多光谱相机研究[D]. 西安: 西安工业大学, 2021.ZHANG Y Y. Research on infrared multispectral camera based on array filter[D]. Xi’an: Xi’an Technological University, 2021. (in Chinese) [26] WANG S W, LI M, XIA C S,et al. 128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique[J].Applied Physics B, 2007, 88(2): 281-284.doi:10.1007/s00340-007-2726-3 [27] LAMBRECHTS A, GONZALEZ P, GEELEN B,et al.. A CMOS-compatible, integrated approach to hyper-and multispectral imaging[C].Proceedings of 2014 IEEE InternationalElectron Devices Meeting, IEEE, 2014: 10.5. 1-10.5. 4. [28] SHALTOUT A M, KIM J, BOLTASSEVA A,et al. Ultrathin and multicolour optical cavities with embedded metasurfaces[J].Nature Communications, 2018, 9: 2673.doi:10.1038/s41467-018-05034-6 [29] 迟明波, 韩欣欣, 徐阳, 等. 宽谱段高分辨扫描光谱定标技术[J]. 中国光学,2020,13(2):249-257.doi:10.3788/co.20201302.0249CHI M B, HAN X X, XU Y,et al. Broad band and high resolution scanning spectrum calibration technology[J].Chinese Optics, 2020, 13(2): 249-257. (in Chinese)doi:10.3788/co.20201302.0249 [30] 杜丽丽, 刘李, 葛曙乐, 等. 红外甚高光谱分辨率探测仪高精度在轨光谱定标[J]. 红外与毫米波学报,2021,40(2):214-222.doi:10.11972/j.issn.1001-9014.2021.02.012DU L L, LIU L, GE SH L,et al. High precision on-orbit spectral calibration of atmospheric infrared ultra-spectral sounder[J].Journal of Infrared and Millimeter Waves, 2021, 40(2): 214-222. (in Chinese)doi:10.11972/j.issn.1001-9014.2021.02.012 [31] ZHANG Z X, CHANG J, REN H X,et al. Snapshot imaging spectrometer based on a microlens array[J].Chinese Optics Letters, 2019, 17(1): 011101.doi:10.3788/COL201917.011101 [32] SHOGENJI R, KITAMURA Y, YAMADA K,et al. Multispectral imaging using compact compound optics[J].Optics Express, 2004, 12(8): 1643-1655.doi:10.1364/OPEX.12.001643 [33] GEELEN B, JAYAPALA M, TACK N,et al. Low-complexity image processing for a high-throughput low-latency snapshot multispectral imager with integrated tiled filters[J].Proceedings of SPIE, 2013, 8743: 87431E.