-
摘要:
为了减小对卫星上的空间使用,针对定标特点,本文提出了一种用于积分球光源准直照明的自由曲面反射镜设计方法。采用该方法,能够以小口径的积分球实现大面积的方形均匀辐照度分布。首先,通过点光源模型建立自由曲面离轴反射照明数学模型,然后,通过切比雪夫点离散自由曲面,并求解出满足点光源照明的自由曲面模型,最后,分析积分球的光源特性,通过逐步优化自由曲面能量分布方法完成点光源照明模型到积分球照明模型的转变。通过分析可知,设定照明面积为140 mm×140 mm时,目标面的辐照度非均匀性的不均匀度小于0.02。满足星载定标轻量化,短光路,结构简单的需求。
Abstract:We propose a design method of a free-form reflector for collimating illumination of integrating spherical light sources to reduce the space occupation on a satellite. By using this method, a square irradiance distribution with large area can be achieved through a integrating sphere with small diameter. Firstly, the mathematical model of off-axis reflection lighting of free-form surface is established through the point light source model, then the free-form surface is discretized by Chebyshev points, and the free-form surface model that satisfies the point light source illumination is solved. Finally, the light source characteristics of the integrating sphere are analyzed. The transformation from the point light source illumination model to the integrating sphere illumination model is achieved by the optimization of the free-form surface energy distribution. The analysis results show that when the illumination area is set as 140 mm×140 mm, the irradiance non-uniformity of the target surface is less than 0.02. This method can meet the requirements of spaceborne calibration for light weight, short light path and simple structure.
-
表 1自由曲面反射镜的相关参数
Table 1.Reference parameters of the freeform reflector
Parameters value $ \theta $/(°) 15 r/mm 432 z/mm $ 900/\sqrt 2 $ F# 1.6 -
[1] WANG H R, LI H D, QI J,et al. Total solar irradiance monitor for the FY-3B satellite-space experiments and primary data corrections[J].Solar Physics, 2015, 290(2): 645-655.doi:10.1007/s11207-014-0627-2 [2] 高峰, 安培浚. 国际空间和对地观测技术发展战略新动向[J]. 遥感技术与应用,2008,23(6):686-696.doi:10.11873/j.issn.1004-0323.2008.6.686GAO F, AN P J. The new trends of development strategy on the international space and earth observation technology[J].Remote Sensing Technology and Application, 2008, 23(6): 686-696. (in Chinese)doi:10.11873/j.issn.1004-0323.2008.6.686 [3] 陈风, 郑小兵. 光谱非匹配对光学遥感器定标精度的影响[J]. 光学 精密工程,2008,16(3):415-419.CHEN F, ZHENG X B. Influence of spectrum not-matching on calibration precision of remote sensor[J].Optics and Precision Engineering, 2008, 16(3): 415-419. (in Chinese) [4] HU SH S, MA SH, YAN W,et al. Measuring internal solitary wave parameters based on VIIRS/DNB data[J].International Journal of Remote Sensing, 2019, 40(20): 7805-7816.doi:10.1080/01431161.2019.1608389 [5] 王玉鹏, 胡秀清, 王红睿, 等. 可在轨溯源的太阳反射波段光学遥感仪器辐射定标基准传递链路[J]. 光学 精密工程,2015,23(7):1807-1812.doi:10.3788/OPE.20152307.1807WANG Y P, HU X Q, WANG H R,et al. Standard transfer chain for radiometric calibration of optical sensing instruments with traceability in solar reflective bands[J].Optics and Precision Engineering, 2015, 23(7): 1807-1812. (in Chinese)doi:10.3788/OPE.20152307.1807 [6] PANG W W, ZHENG X B, LI J J,et al. High accuracy calibration technology of remote sensor tracing to cryogenic radiometer[J].Journal of Atmospheric and Environmental Optics, 2014, 9(2): 138-148. [7] LI B Y, REN J W, WAN ZH,et al. Research of large aperture integrating sphere used in the radiative calibration for space remote sensor[J].Journal of Optoelectronics·Laser, 2013, 24(3): 464-469. [8] 徐达, 岳世新, 张国玉, 等. Offner型凸面光栅宽动态范围辐射定标光源设计[J]. 中国光学,2020,13(5):1085-1093.doi:10.37188/CO.2019-0221XU D, YUE SH X, ZHANG G Y,et al. Design of an Offner convex grating radiation calibration light source with a wide dynamic range[J].Chinese Optics, 2020, 13(5): 1085-1093. (in Chinese)doi:10.37188/CO.2019-0221 [9] HANSSEN L. Integrating-sphere system and method for absolute measurement of transmittance, reflectance, and absorptance of specular samples[J].Applied Optics, 2001, 40(19): 3196-3204.doi:10.1364/AO.40.003196 [10] RABL A, GORDON J M. Reflector design for illumination with extended sources: the basic solutions[J].Applied Optics, 1994, 33(25): 6012-6021.doi:10.1364/AO.33.006012 [11] 孙景旭, 张汉壮. 一种高亮度积分球定标光源的热设计[J]. 光学学报,2015,35(3):0312002.doi:10.3788/AOS201535.0312002SUN J X, ZHANG H ZH. Thermal design for a kind of high-light-level integrating sphere calibration source[J].Acta Optica Sinica, 2015, 35(3): 0312002. (in Chinese)doi:10.3788/AOS201535.0312002 [12] 顾国超, 王丽, 李洪波, 等. 瞬态热量标定系统的太阳模拟器光学系统设计[J]. 中国光学,2012,5(6):630-638.GU G CH, WANG L, LIU H B,et al. Optical design of solar simulator used for transient calorimeter calibration system[J].Chinese Optics, 2012, 5(6): 630-638. (in Chinese) [13] WU R M, CHANG SH Q, ZHENG ZH R,et al. Formulating the design of two freeform lens surfaces for point-like light sources[J].Optics Letters, 2018, 43(7): 1619-1622.doi:10.1364/OL.43.001619 [14] YU B H, TIAN ZH H, SU D Q,et al. Optical design of an ultra-short-focus projection system with low throw ratio based on a freeform surface mirror[J].Chinese Optics, 2020, 13(2): 363-371.doi:10.3788/co.20201302.0363 [15] BÖSEL C, WORKU N G, GROSS H. Ray-mapping approach in double freeform surface design for collimated beam shaping beyond the paraxial approximation[J].Applied Optics, 2017, 56(13): 3679-3688.doi:10.1364/AO.56.003679 [16] DESNIJDER K, HANSELAER P, MEURET Y. Ray mapping method for off-axis and non-paraxial freeform illumination lens design[J].Optics Letters, 2019, 44(4): 771-774.doi:10.1364/OL.44.000771 [17] 张赢, 丁红昌, 赵长福, 等. 基于多 传感器装配的自由曲面法线找正方法研究[J]. 中国光学,2021,14(2):344-352.doi:10.37188/CO.2020-0205ZHANG Y, DING H CH, ZHAO CH F,et al. The normal alignment method for freeform surfaces based on multiple laser sensor assembly[J].Chinese Optics, 2021, 14(2): 344-352. (in Chinese)doi:10.37188/CO.2020-0205 [18] SCHRUBEN J S. Formulation of a reflector-design problem for a lighting fixture[J].Journal of the Optical Society of America, 1972, 62(12): 1498-1501.doi:10.1364/JOSA.62.001498 [19] 顾国超, 刘洪波, 陈家奇, 等. 基于Supporting-Ellipsoid方法的自由曲面构造[J]. 中国光学,2014,7(5):823-829.GU G CH, LIU H B, CHEN J Q,et al. Construction of freeform surface based on Supporting-Ellipsoid method[J].Chinese Optics, 2014, 7(5): 823-829. (in Chinese) [20] WESTER R, MÜLLER G, VÖLL A,et al. Designing optical free-form surfaces for extended sources[J].Optics Express, 2014, 22(S2): A552-A560.doi:10.1364/OE.22.00A552