A Novel Methane and Hydrogen sensor with Surface Plasmon Resonance-Based Photonic Quasi-crystal Fiber
doi:10.37188/CO.2022-0025
-
摘要:
设计了一种用于甲烷和氢气同时检测的基于表面等离子体共振(SPR)的新型光子准晶体光纤(PQF)传感器。在该传感器中,在银膜上分别沉积Pd-WO3和掺杂聚硅氧烷的笼型分子E薄膜作为氢气和甲烷的敏感材料。采用全矢量有限元方法对PQF-SPR传感器进行了数值分析,证明了该传感器具有良好的传感性能。在0% ~ 3.5%的浓度范围内,氢气的最大检测灵敏度和平均灵敏度分别为0.8 nm/%和0.65 nm/%,甲烷的最大灵敏度和平均灵敏度分别为10 nm/%和8.81 nm/%。该传感器具有同时检测多种气体的能力,在设备小型化和远程监测方面具有很大的潜力。
Abstract:A novel photonic quasi-crystal fiber (PQF) sensor based on surface plasmon resonance (SPR) is designed for simultaneous detection of methane and hydrogen. In the sensor, Pd-WO3and cryptophane E doped polysiloxane films deposited on silver films are the hydrogen and methane sensing materials, respectively. The PQF-SPR sensor is analyzed numerically by the full-vector finite element method and excellent sensing performance is demonstrated. The maximum and average hydrogen sensitivities are 0.8 nm/% and 0.65 nm/% in the concentration range of 0% to 3.5% and the maximum and average methane sensitivities are 10 nm/% and 8.81 nm/% in the range between 0% and 3.5%. The sensor provides the capability of detecting multiple gases and has large potential in device miniaturization and remote monitoring.
-
-
[1] HAO Q Q, LUO ZH M, WANG T,et al. The flammability limits and explosion behaviours of hydrogen-enriched methane-air mixtures[J].Experimental Thermal and Fluid Science, 2021, 126: 110395.doi:10.1016/j.expthermflusci.2021.110395 [2] SUMIDA S, OKAZAKI S, ASAKURA S,et al. Distributed hydrogen determination with fiber-optic sensor[J].Sensors and Actuators B:Chemical, 2005, 108(1-2): 508-514.doi:10.1016/j.snb.2004.11.068 [3] YANG J CH, XU L J, CHEN W M. An optical fiber methane gas sensing film sensor based on core diameter mismatch[J].Chinese Optics Letters, 2010, 8(5): 482-484.doi:10.3788/COL20100805.0482 [4] WANG Y, YANG M H, ZHANG G L,et al. Fiber optic hydrogen sensor based on fabry-perot interferometer coated with sol-gel Pt/WO3coating[J].Journal of Lightwave Technology, 2015, 33(12): 2530-2534.doi:10.1109/JLT.2014.2365183 [5] ZHOU B, CHEN ZH, ZHANG Y B,et al. Active fiber gas sensor for methane detecting based on a laser heated fiber bragg grating[J].IEEE Photonics Technology Letters, 2014, 26(11): 1069-1072.doi:10.1109/LPT.2014.2314692 [6] PUSTELNY T, MACIAK E, OPILSKI Z,et al. Optical interferometric structures for application in gas sensors[J].Optica Applicata, 2007, 37(1-2): 187-194. [7] WANG X X, ZHU J K, XU Y Q,et al. A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure[J].Chinese Physics B, 2021, 30(2): 024207.doi:10.1088/1674-1056/abd690 [8] WANG X X, WU Y, WEN X L,et al. Surface plasmons and SERS application of Au nanodisk array and Au thin film composite structure[J].Optical and Quantum Electronics, 2020, 52(5): 238.doi:10.1007/s11082-020-02360-2 [9] LIU Q, JIANG Y, SUN Y D,et al. Surface plasmon resonance sensor based on U-shaped photonic quasi-crystal fiber[J].Applied Optics, 2021, 60(6): 1761-1766.doi:10.1364/AO.419518 [10] LIU Q, SUN J D, SUN Y D,et al. Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film[J].Optical Materials, 2020, 102: 109800.doi:10.1016/j.optmat.2020.109800 [11] LI CH G, YAN B, LIU J J. Refractive index sensing characteristics in a D-shaped photonic quasi-crystal fiber sensor based on surface plasmon resonance[J].Journal of the Optical Society of America A, 2019, 36(10): 1663-1668.doi:10.1364/JOSAA.36.001663 [12] YAN B, WANG A R, LIU E X,et al. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber[J].Journal of Physics D:Applied Physics, 2018, 51(15): 155105.doi:10.1088/1361-6463/aab4ce [13] SIDDIK A B, HOSSAIN S, PAUL A K,et al. High sensitivity property of dual-core photonic crystal fiber temperature sensor based on surface plasmon resonance[J].Sensing and Bio-Sensing Research, 2020, 29: 100350.doi:10.1016/j.sbsr.2020.100350 [14] HOSSAIN B, ISLAM S M R, HOSSAIN K M T,et al. High sensitivity hollow core circular shaped PCF surface plasmonic biosensor employing silver coat: a numerical design and analysis with external sensing approach[J].Results in Physics, 2020, 16: 102909.doi:10.1016/j.rinp.2019.102909 [15] WEI W, NONG J P, ZHANG G W,et al. Graphene-based long-period fiber grating surface plasmon resonance sensor for high-sensitivity gas sensing[J].Sensors, 2017, 17(1): 2.doi:10.1109/JSEN.2016.2633500 [16] LIU H, WANG M, WANG Q,et al. Simultaneous measurement of hydrogen and methane based on PCF-SPR structure with compound film-coated side-holes[J].Optical Fiber Technology, 2018, 45: 1-7.doi:10.1016/j.yofte.2018.05.007 [17] LIU H, ZHANG Y Z, CHEN C,et al. Transverse-stress compensated methane sensor based on long-period grating in photonic crystal fiber[J].IEEE Access, 2019, 7: 175522-175530.doi:10.1109/ACCESS.2019.2951133 [18] LIU E X, LIANG SH W, LIU J J. Double-cladding structure dependence of guiding characteristics in six-fold symmetric photonic quasi-crystal fiber[J].Superlattices and Microstructures, 2019, 130: 61-67.doi:10.1016/j.spmi.2019.03.011 [19] LIU E X, TAN W, YAN B,et al. Robust transmission of orbital angular momentum mode based on a dual-cladding photonic quasi-crystal fiber[J].Journal of Physics D:Applied Physics, 2019, 52(32): 325110.doi:10.1088/1361-6463/ab2369 [20] LEE Y S, LEE C G, KIM S. Annular core photonic quasi-crystal fiber with wideband nearly zero ultra-flat dispersion, low confinement loss and high nonlinearity[J].Optik, 2018, 157: 141-147.doi:10.1016/j.ijleo.2017.10.166 [21] SIVABALAN S, RAINA J P. High normal dispersion and large mode area photonic quasi-crystal fiber stretcher[J].IEEE Photonics Technology Letters, 2011, 23(16): 1139-1141.doi:10.1109/LPT.2011.2157817 [22] LIU D M, LIU J CH, WANG H,et al. Laser etching of groove structures with micro-optical fiber-enhanced irradiation[J].Nanoscale Research Letters, 2012, 7(1): 318.doi:10.1186/1556-276X-7-318 [23] ZHAO Q K, TIAN F J, YANG X H,et al. Optical fibers with special shaped cores drawn from 3D printed preforms[J].Optik, 2017, 133: 60-65.doi:10.1016/j.ijleo.2017.01.002 [24] MARUYAMA T, FUKUI K. Indium-tin oxide thin films prepared by chemical vapor deposition[J].Journal of Applied Physics, 1991, 70(7): 3848-3851.doi:10.1063/1.349189 [25] BING P B, SUI J L, WU G F,et al. Analysis of dual-channel simultaneous detection of photonic crystal fiber sensors[J].Plasmonics, 2020, 15(4): 1071-1076.doi:10.1007/s11468-020-01131-9 [26] ZHANG Y N, ZHAO Y, WANG Q. Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity[J].Sensors and Actuators B:Chemical, 2015, 209: 431-437.doi:10.1016/j.snb.2014.12.002 [27] SHAKYA A K, SINGH S. Design of dual polarized tetra core PCF based plasmonic RI sensor for visible-IR spectrum[J].Optics Communications, 2021, 478: 126372.doi:10.1016/j.optcom.2020.126372 [28] YAN X, FU R, CHENG T L,et al. A highly sensitive refractive index sensor based on a V-shaped photonic crystal fiber with a high refractive index range[J].Sensors, 2021, 21(11): 3782.doi:10.3390/s21113782 [29] LIU Q, SUN J D, SUN Y D,et al. High-sensitivity SPR sensor based on the eightfold eccentric core PQF with locally coated indium tin oxide[J].Applied Optics, 2020, 59(22): 6484-6489.doi:10.1364/AO.395605 [30] YANG ZH, XIA L, LI CH,et al. A surface plasmon resonance sensor based on concave-shaped photonic crystal fiber for low refractive index detection[J].Optics Communications, 2019, 430: 195-203.doi:10.1016/j.optcom.2018.08.049 [31] ZHAN Y S, LI Y L, WU ZH Q,et al. Surface plasmon resonance-based microfiber sensor with enhanced sensitivity by gold nanowires[J].Optical Materials Express, 2018, 8(12): 3927-3940.doi:10.1364/OME.8.003927 [32] PAUL K A, HABIB S, HAI N H,et al. An air-core photonic crystal fiber based plasmonic sensor for high refractive index sensing[J].Optics Communications, 2020, 464: 125556.doi:10.1016/j.optcom.2020.125556 [33] LIU Q, ZHAO J, SUN Y D,et al. High-sensitivity methane sensor composed of photonic quasi-crystal fiber based on surface plasmon resonance[J].Journal of the Optical Society of America A, 2021, 38(10): 1438-1442.doi:10.1364/JOSAA.432045 [34] GANGWAR R K, SINGH V K. Highly Sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor[J].Plasmonics, 2017, 12(5): 1367-1372.doi:10.1007/s11468-016-0395-y [35] HOSSAIN B, HOSSAIN S, ISLAM S M R,et al. Numerical development of high performance quasi D-shape PCF-SPR biosensor: an external sensing approach employing gold[J].Results in Physics, 2020, 18: 103281.doi:10.1016/j.rinp.2020.103281 [36] HOSSAIN B, MAHENDIRAN T V, ABDULRAZAK L F,et al. Numerical analysis of gold coating based quasi D-shape dual core PCF SPR sensor[J].Optical and Quantum Electronics, 2020, 52(10): 446.doi:10.1007/s11082-020-02555-7 [37] LIANG H, SHEN Y, FENG Y,et al. A surface plasmon resonance temperature sensing unit based on a graphene oxide composite photonic crystal fiber[J].IEEE Photonics Journal, 2020, 12(3): 7201811.