留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于布里渊光纤振荡器的可调谐窄带微波光子滤波器研究

游亚军 许鑫 王琳毅 冯刘艳 刘毅 耿文平 贺文君

游亚军, 许鑫, 王琳毅, 冯刘艳, 刘毅, 耿文平, 贺文君. 基于布里渊光纤振荡器的可调谐窄带微波光子滤波器研究[J]. , 2022, 15(4): 660-667. doi: 10.37188/CO.2022-0057
引用本文: 游亚军, 许鑫, 王琳毅, 冯刘艳, 刘毅, 耿文平, 贺文君. 基于布里渊光纤振荡器的可调谐窄带微波光子滤波器研究[J]. , 2022, 15(4): 660-667. doi: 10.37188/CO.2022-0057
YOU Ya-jun, XU Xin, WANG Lin-yi, FENG Liu-yan, LIU Yi, GENG Wen-ping, HE Wen-jun. Tunable narrowband microwave photonic filter based on brillouin fiber oscillator[J]. Chinese Optics, 2022, 15(4): 660-667. doi: 10.37188/CO.2022-0057
Citation: YOU Ya-jun, XU Xin, WANG Lin-yi, FENG Liu-yan, LIU Yi, GENG Wen-ping, HE Wen-jun. Tunable narrowband microwave photonic filter based on brillouin fiber oscillator[J]. Chinese Optics, 2022, 15(4): 660-667. doi: 10.37188/CO.2022-0057

基于布里渊光纤振荡器的可调谐窄带微波光子滤波器研究

doi: 10.37188/CO.2022-0057
基金项目: 国家重点研发计划(No. 2019YFF0301802); 山西省重点研发项目(No. 201903D121124); 中国博士后科学基金(No. 2020M682113); 中国山西省留学基金委(No. 2020-112); 山西省高等学校科技创新计划(No. 2020L0268); 山西省基础研究计划(No. 2021030212558,No. 20210302124390); 山西省研究生创新工程(No. 2021Y616)
详细信息
    作者简介:

    游亚军(1990—),男,山西晋中人,博士,2019年于西北工业大学获得博士学位,现为中北大学机电工程学院讲师,主要从事铁电声光效应与微波光子器件等方面的研究。E-mail:yajunyou@nuc.edu.cn

    刘 毅(1984—),男,山西长治人,博士,副教授,2014年于天津大学获得博士学位,现为中北大学仪器与电子学院副教授,硕士生导师,主要从事光纤 、光纤传感等领域基础科学问题和关键技术研究。E-mail:liuyi28@163.com

    通讯作者:

    liuyi28@163.com

  • 中图分类号: TN713

Tunable narrowband microwave photonic filter based on brillouin fiber oscillator

Funds: Supported by National Key R&D Program of China (No. 2019YFF0301802); Key Research and Development Projects of Shanxi Province (No. 201903D121124); China Postdoctoral Science Foundation (No. 2020M682113); Shanxi Scholarship Council of China (No. 2020-112); Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2020L0268); Fundamental Research Program of Shanxi Province (No. 2021030212558, No. 20210302124390); Shanxi Postgraduate Innovation Project (No. 2021Y616).
More Information
  • 摘要:

    为了使微波光子滤波器兼具宽调谐范围与高频率选择性,本文基于窄线宽单纵模光纤受激布里渊振荡器首次提出并验证了一种具有宽调谐范围、窄滤波带宽特性的微波光子滤波器。该滤波器的核心是腔长为10 m的布里渊光纤振荡器,受激布里渊散射泵浦光与光载波信号分别由两个不同的可调谐 器提供,布里渊增益与光调制信号相互作用后,利用该布里渊光纤振荡器压缩光谱线宽,实现窄带微波光子滤波;通过简单地改变泵浦光波长,实现滤波器通带大范围稳定调谐。实验结果表明,该微波光子滤波器在0~20 GHz的频率范围内可稳定调谐,带外抑制比约为20 dB,其3-dB带宽和最大Q值分别为6.2 kHz和3.222×106。本文提出的单通带微波光子滤波器不仅具有目前已知的最高Q值,同时具有宽可调性、高带外抑制和结构简单等优势。

     

  • 图 1  MPF的实验装置。TLS,可调谐 器;PC,偏振控制器;PM,相位调制器;OC,光耦合器;SMF,单模光纤;EDFA,掺铒光纤放大器;Cir,光环形器;PD,光电探测器;OSA,光谱分析仪;VNA,矢量网络分析仪

    Figure 1.  Experimental setup of MPF. TLS, tunable laser; PC, polarization controller; PM, phase modulator; OC, optical coupler; SMF, single-mode fiber; EDFA, erbium-doped fiber amplifier; Cir, optical circulator; PD, photodetector; OSA , spectrum analyzer; VNA, vector network analyzer

    图 2  可调谐窄带MPF原理示意图。(a)双边带扫频调制光信号光谱;(b)SBS光谱;(c)利用SBS放大DSB调制信号上边带;(d)环形腔R1的FSR响应;(e)MPF滤波通带响应

    Figure 2.  Illustration of tunable narrowband MPF principle. (a) Optical spectra of double sideband swept frequency modulated signal. (b) Optical spectra of SBS. (c) Amplification of the upper sideband of a DSB modulated signal using SBS gain. (d) FSR response of single-ring cavity R1. (e) Response of MPF

    图 3  (a)通过FSR抑制边模原理示意图;(b)基于布里渊光纤振荡器的MPF频率响应示意图

    Figure 3.  (a) Schematic diagram of side mode suppression by FSR. (b)The response of MPF based on Brillouin fiber oscillator

    图 4  布里渊增益和布里渊光纤振荡器输出光频谱对比

    Figure 4.  Comparison of Brillouin gain and output light spectra of Brillouin fiber oscillator

    图 5  TLS泵浦光谱、布里渊振荡器输出光谱及经过耦合器OC3的合路输出光谱

    Figure 5.  TLS pump spectrum, Brillouin laser output spectrum and combined output spectrum through coupler OC3

    图 6  泵浦光波长在1550.232 nm至1550.392 nm之间调谐时MPF的频率响应

    Figure 6.  The frequency response of MPF when the wavelength of the pump light is tuned from 1550.232 nm to 1550.392 nm.

    图 7  当泵浦光的波长在1550.214 nm至1550.392 nm之间变化时,MPF的频率响应。(a)20 GHz跨度内的总体对比图;(b)30 MHz跨度展宽图

    Figure 7.  Frequency response of MPF when the wavelength of the pump light varies from 1550.214 nm to 1550.392 nm. (a) Overall comparison diagram in 20 GHz span,(b) expanded diagram with 30 MHz span

    图 8  不同中心频率下的3 dB带宽和边模抑制比

    Figure 8.  3-dB bandwidth and side mode suppression ratio at different center frequencies

    Baidu
  • [1] YAO J P. Microwave photonics[J]. Journal of Lightwave Technology, 2009, 27(3): 314-335. doi: 10.1109/JLT.2008.2009551
    [2] CHEN T, YI X K, LI L W, et al. Single passband microwave photonic filter with wideband tunability and adjustable bandwidth[J]. Optics Letters, 2012, 37(22): 4699-4701. doi: 10.1364/OL.37.004699
    [3] KHILO A, SPECTOR S J, GREIN M E, et al. Photonic ADC: overcoming the bottleneck of electronic jitter[J]. Optics Express, 2012, 20(4): 4454-4469. doi: 10.1364/OE.20.004454
    [4] 陶源盛, 王兴军, 胡薇薇. 硅基微波光子滤波器的研究进展[J]. 半导体光电,2021,42(1):1-10.

    TAO Y SH, WANG X J, HU W W. Recent progresses of silicon integrated microwave photonic filters[J]. Semiconductor Optoelectronics, 2021, 42(1): 1-10. (in Chinese)
    [5] 吴妮珊, 夏历. 基于微波光子学的准分布式光纤传感解调技术[J]. 中国光学,2021,14(2):245-263. doi: 10.37188/CO.2020-0121

    WU N SH, XIA L. Interrogation technology for quasi-distributed optical fiber sensing systems based on microwave photonics[J]. Chinese Optics, 2021, 14(2): 245-263. (in Chinese) doi: 10.37188/CO.2020-0121
    [6] 余晓畅, 许雅晴, 蔡佳辰, 等. 可调微纳滤波结构的研究进展[J]. 中国光学,2021,14(5):1069-1088. doi: 10.37188/CO.2021-0044

    YU X CH, XU Y Q, CAI J CH, et al. Progress of tunable micro-Nano filtering structures[J]. Chinese Optics, 2021, 14(5): 1069-1088. (in Chinese) doi: 10.37188/CO.2021-0044
    [7] 王文轩, 陶继, 黄龙. 基于光注入法布里-珀罗 器的窄带可调谐微波光子滤波器[J]. 中国 ,2017,44(10):1006002. doi: 10.3788/CJL201744.1006002

    WANG W X, TAO J, HUANG L. Narrowband tunable microwave photonic filter based on Fabry-Perot laser with optical injection[J]. Chinese Journal of Lasers, 2017, 44(10): 1006002. (in Chinese) doi: 10.3788/CJL201744.1006002
    [8] 胡总华, 聂奎营, 阮毅, 等. 基于色散光纤环级联结构的可调谐带通微波光子滤波器[J]. 半导体光电,2019,40(2):189-192,199.

    HU Z H, NIE K Y, RUAN Y, et al. Bandpass-tunable microwave photonic filter based on dispersion fiber loops with cascaded structure[J]. Semiconductor Optoelectronics, 2019, 40(2): 189-192,199. (in Chinese)
    [9] GAO L, CHEN X F, YAO J P. Tunable microwave photonic filter with a narrow and flat-top passband[J]. IEEE Microwave and Wireless Components Letters, 2013, 23(7): 362-364. doi: 10.1109/LMWC.2013.2262263
    [10] ZHANG T T, XIONG J T, ZHENG J L, et al. Wideband tunable single bandpass microwave photonic filter based on FWM dynamics of optical-injected DFB laser[J]. Electronics Letters, 2016, 52(1): 57-59. doi: 10.1049/el.2015.1696
    [11] 张梓平, 牛哓晨, 黄杰, 等. 基于光纤环谐振腔的高性能微波光子滤波器[J]. 光学学报,2020,40(21):2106001. doi: 10.3788/AOS202040.2106001

    ZHANG Z P, NIU X CH, HUANG J, et al. High-performance microwave photonic filter based on fiber ring resonator[J]. Acta Optica Sinica, 2020, 40(21): 2106001. (in Chinese) doi: 10.3788/AOS202040.2106001
    [12] 严艺, 廖同庆, 吕晓光, 等. 新型多抽头复系数微波光子滤波器[J]. 红外与 工程,2019,48(1):0120001. doi: 10.3788/IRLA201948.0120001

    YAN Y, LIAO T Q, LU X G, et al. Novel multitap complex coefficient microwave photonic filter[J]. Infrared and Laser Engineering, 2019, 48(1): 0120001. (in Chinese) doi: 10.3788/IRLA201948.0120001
    [13] WANG W T, LIU J G, MEI H K, et al. Microwave photonic filter with complex coefficient based on optical carrier phase shift utilizing two stimulated Brillouin scattering pumps[J]. IEEE Photonics Journal, 2015, 7(1): 1-8.
    [14] JIANG H Y, YAN L SH, PAN W, et al. Ultra-high speed RF filtering switch based on stimulated Brillouin scattering[J]. Optics Letters, 2018, 43(2): 279-282. doi: 10.1364/OL.43.000279
    [15] 张卫华, 张丽丽, 曹晔. 基于受激布里渊散射的微波光子滤波器[J]. 南开大学学报(自然科学版),2014,47(1):55-60.

    ZHANG W H, ZHANG L L, CAO Y. Microwave photons filter based on stimulated Brillouin scattering[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2014, 47(1): 55-60. (in Chinese)
    [16] 徐翌明, 潘炜, 卢冰, 等. 基于受激布里渊散射的多阻带微波光子滤波器[J]. 中国 ,2018,45(11):1106004. doi: 10.3788/CJL201845.1106004

    XU Y M, PAN W, LU B, et al. Multi-stopband microwave photonic filter based on stimulated Brillouin scattering[J]. Chinese Journal of Lasers, 2018, 45(11): 1106004. (in Chinese) doi: 10.3788/CJL201845.1106004
    [17] WANG T, XIAO J L, WU J L, et al. Dual-passband microwave photonic filter based on a directly modulated microcavity laser[J]. IEEE Photonics Technology Letters, 2021, 33(4): 185-188. doi: 10.1109/LPT.2021.3050818
    [18] LI ZH K, ZHANG ZH Y, ZENG ZH, et al. Tunable dual-passband microwave photonic filter with a fixed frequency interval using phase-to-intensity modulation conversion by stimulated Brillouin scattering[J]. Applied Optics, 2019, 58(8): 1961-1965. doi: 10.1364/AO.58.001961
    [19] ZENG ZH, ZHANG ZH Y, LI ZH K, et al. Freely tunable dual-passband microwave photonic filter based on phase-to-intensity modulation conversion by stimulated Brillouin scattering[J]. IEEE Photonics Journal, 2019, 11(1): 5501009.
    [20] WEN H SH, LI M, LI W, et al. Ultrahigh-Q and tunable single-passband microwave photonic filter based on stimulated brillouin scattering and a fiber ring resonator[J]. Optics Letters, 2018, 43(19): 4659-4662. doi: 10.1364/OL.43.004659
    [21] WEN H SH, XU B R, ZHAI K P, et al. Ultrahigh spectral resolution single passband microwave photonic filter[J]. Optics Express, 2021, 29(18): 28725-28740. doi: 10.1364/OE.436173
    [22] KURASHIMA T, HORIGUCHI T, TATEDA M. Thermal effects of Brillouin gain spectra in single-mode fibers[J]. IEEE Photonics Technology Letters, 1990, 2(10): 718-720. doi: 10.1109/68.60770
    [23] NICATI P A, TOYAMA K, HUANG S, et al. Temperature effects in a Brillouin fiber ring laser[J]. Optics Letters, 1993, 18(24): 2123-2125. doi: 10.1364/OL.18.002123
    [24] 刘毅, 于晋龙, 王红杰, 等. 基于反馈光纤环的可调多波长布里渊掺铒光纤 器[J]. 中国 ,2014,41(2):0202003.

    LIU Y, YU J L, WANG H J, et al. Tunable multiwavelength brillouin-erbium fiber laser based on feedback fiber loop[J]. Chinese Journal of Lasers, 2014, 41(2): 0202003. (in Chinese)
    [25] 黄海碧, 刘文杰, 孙粤辉, 等. 高超噪比宽带毫米波噪声信号光子学产生研究[J]. 中国光学,2022,15(2):251-258. doi: 10.37188/CO.2021-0158

    HUANG H B, LIU W J, SUN Y H, et al. Photonics generation of broadband millimeter wave noise signals with high excess noise ratios[J]. Chinese Optics, 2022, 15(2): 251-258. (in Chinese) doi: 10.37188/CO.2021-0158
  • 加载中
图(8)
计量
  • 文章访问数:  601
  • HTML全文浏览量:  255
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 修回日期:  2022-05-03
  • 网络出版日期:  2022-06-27

目录

    /

    返回文章
    返回
    Baidu
    map