留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天高分辨率对地光学遥感载荷研究进展

苏云,葛婧菁,王业超,王乐然,王钰,郑子熙,邵晓鹏

downloadPDF
苏云, 葛婧菁, 王业超, 王乐然, 王钰, 郑子熙, 邵晓鹏. 航天高分辨率对地光学遥感载荷研究进展[J]. , 2023, 16(2): 258-282. doi: 10.37188/CO.2022-0085
引用本文: 苏云, 葛婧菁, 王业超, 王乐然, 王钰, 郑子熙, 邵晓鹏. 航天高分辨率对地光学遥感载荷研究进展[J]. , 2023, 16(2): 258-282.doi:10.37188/CO.2022-0085
SU Yun, GE Jing-jing, WANG Ye-chao, WANG Le-ran, WANG Yu, ZHENG Zi-xi, SHAO Xiao-peng. Research progress on high-resolution imaging system for optical remote sensing in aerospace[J]. Chinese Optics, 2023, 16(2): 258-282. doi: 10.37188/CO.2022-0085
Citation: SU Yun, GE Jing-jing, WANG Ye-chao, WANG Le-ran, WANG Yu, ZHENG Zi-xi, SHAO Xiao-peng. Research progress on high-resolution imaging system for optical remote sensing in aerospace[J].Chinese Optics, 2023, 16(2): 258-282.doi:10.37188/CO.2022-0085

航天高分辨率对地光学遥感载荷研究进展

doi:10.37188/CO.2022-0085
基金项目:国家自然基金项目(No. 6217031112,No. 61976169,No. 11774164)
详细信息
    作者简介:

    苏 云(1982—),男,湖北当阳人,博士,研究员,2005年6月于北京理工大学获得学士学位,2008 年 6 月于中国空间技术研究院获得硕士学位,2018 年9月起在西安电子科技大学攻读博士学位,自2008年6月于北京空间机电研究所工作,主要从事先进光学系统设计、计算光学基础理论与方法研究。E-mail:suedul@163.com

    葛婧菁(1984—),女,黑龙江绥芬河人,博士,高级工程师,2011年6月于南开大学获得博士学位,2011年8月至今于北京空间机电研究院工作,主要从事光学遥感、计算光学等方面的研究。E-mail:m18210968826@163.com

    王业超(1993—),男,甘肃临夏人,硕士,工程师,2020年6月获得中国空间技术研究院硕士学位,主要从事计算成像模型及重建算法等方面的研究。E-mail:cast_wangyc_508@163.com

    王乐然(1996—),女,黑龙江齐齐哈尔人,硕士,助理工程师,2021年6月获得天津大学硕士学位,主要从事光学设计、图像处理等方面的研究。E-mail:wangler7@163.com

    王 钰(1994—),男,内蒙古通辽人,博士,工程师,2021年6月获得中国空间技术研究院博士学位,主要从事新体制光学成像、光学遥感图像处理与应用等方面的研究。E-mail:93031@163.com

    郑子熙(1997—),女,河北承德人,硕士,助理工程师,2020年12月获得爱丁堡大学硕士学位,主要从事计算光学、光电学等方面的研究。E-mail:807492091@qq.com

  • 中图分类号:V474.2

Research progress on high-resolution imaging system for optical remote sensing in aerospace

Funds:Supported by the National Natural Science Foundation of China (No. 6217031112, No. 61976169, No. 11774164)
More Information
  • 摘要:

    随着光学成像技术的不断发展和遥感应用需求的日益增长,跨尺度高分辨率光学技术在遥感领域得到广泛应用。为了获得更多的目标细节信息,国内外研究学者在不同技术方向开展了相关研究。本文对遥感成像技术进行了总结分类,介绍了具有代表性的航天高分辨率对地光学遥感载荷技术,重点关注单体结构主镜、可展开分块拼接主镜、光学干涉主镜、光栅衍射主镜、虚拟合成孔径、光子型综合孔径成像、计算超分辨成像、编队合成孔径等成像模式,为高分辨率对地光学遥感载荷发展提供新的发展思路。

  • 图 11 m以内高分辨率光学遥感卫星

    Figure 1.High-resolution optical remote sensing satellites with 1 m resolution

    图 2高分辨率光学遥感卫星技术发展情况

    Figure 2.Technical changes of high resolution optical remote sensing satellite

    图 3地球静止轨道空间监视系统

    Figure 3.GEO-oculus surveillance system

    图 4高分四号遥感卫星[39]

    Figure 4.GF-4 remote sensing satellite[39]

    图 54 m碳化硅非球面反射镜[41]

    Figure 5.4 m SiC aspherical mirror[41]

    图 6MOIRE概念图[48]

    Figure 6.MOIRE concept map[48]

    图 7MOIRE项目制备得到的具有衍图案的光学元器件[49]

    Figure 7.Optical components with diffraction pattern prepared by MOIRE project[49]

    图 8MOIRE系统已研制的1/8地面样机[50]

    Figure 8.1/8 ground prototype developed by MOIRE system[50]

    图 9MOIRE项目研制的空间环境试验样机[51]

    Figure 9.Space environment test prototype developed by MOIRE project[51]

    图 10GISMO卫星编队原理示意图[55]

    Figure 10.Schematic diagram of GISMO satellite formation principle[55]

    图 11ESA-EUSO概念示意图

    Figure 11.ESA-EUSO concept diagram

    图 12JEM-EUSO望远镜结构示意图[56]

    Figure 12.Structural diagram of JEM-EUSO telescope[56]

    图 13“猎鹰卫星-7”微卫星搭载的“光子筛”成像系统示意图[63]

    Figure 13.Schematic diagram of “photon screen” imaging system carried by “falcon-7” microsatellite[63]

    图 14衍射成像空间望远镜[64]

    Figure 14.Diffraction imaging space telescope[64]

    图 155 m口径衍射望远镜主镜[69]

    Figure 15.Primary mirror of 5 m aperture diffraction telescope[69]

    图 16NRO 研发的 SMT 望远镜(左)和 SMT 望远镜光路设计(右)[79]

    Figure 16.Optical path design of SMT telescope (right) and SMT telescope (left) developed by NRO[79]

    图 17“詹姆斯·韦伯空间望远镜”主镜的在轨展开过程[80]

    Figure 17.On orbit deployment of the primary mirror of the James Webb Space Telescope[80]

    图 18詹姆斯·韦伯可展开分块望远镜

    Figure 18.James Webb unfold block telescope

    图 19地球静止轨道2 m分辨率光学相机

    Figure 19.Optical camera in GEO with 2 m resolution

    图 20LUVOIR-A/LUVOIR-B模拟图

    Figure 20.LUVOIR-A/LUVOIR-B models

    图 21在轨组装典型范例

    Figure 21.Typical on-orbit assembly projects

    图 22斐索-干涉合成孔径成像系统阵列

    Figure 22.Configuration of Fizeau interferometric synthetic aperture imaging system

    图 23Star-9系统[99]

    Figure 23.Star-9 system[99]

    图 24美国TPF-I空间干涉仪示意图

    Figure 24.Space interferometer TPF-I from the U.S.

    图 25TPF-I集光望远镜示意图

    Figure 25.Schematic diagram of collecting telescope TPF-I

    图 26TPF-I光束合成望远镜示意图

    Figure 26.Schematic diagram of beam synthesis telescope TPF-I

    图 27GOLAY-3自适应光学卫星系统[106]

    Figure 27.GOLAY-3 adaptive reconnaissance optical satellite system[106]

    图 28MIDAS系统示意图[110]

    Figure 28.Schematic diagram of MIDAS system[110]

    图 29MIDAS光学系统图[110]

    Figure 29.MIDAS optical system[110]

    图 30ONERA稀疏孔径系统布局图

    Figure 30.Layout of ONERA sparse aperture system

    图 31ONERA稀疏孔径系统共相位试验原理图

    Figure 31.Principle diagram of ONERA sparse aperture system co-phasing test

    图 32ONERA稀疏孔径系统图像恢复仿真结果[111]

    Figure 32.Simulation results of recovery images of ONERA sparse aperture system[111]

    图 33达尔文任务的一种配置[113]

    Figure 33.Configuration of Darwin’s Mission[113]

    图 34FFSAT的概念图

    Figure 34.Concept map of FFSAT

    图 35三轴压电平台

    Figure 35.3-axis piezo stage

    图 36(a)原目标;(b)SPIDER技术获取的图像[121]

    Figure 36.(a) Original object; (b) image obtained by SPIDER technology[121]

    图 37SPIDER系统示意图

    Figure 37.Schematic diagram of SPIDER system

    图 38洛克希德-马丁公司的“SPIDER”成像仪

    Figure 38.SPIDER developed by Lockheed Martin company

    图 39SPOT-5亚像元超分辨率成像方式的(Supermode模式)成像效果

    Figure 39.Imaging effect of SPOT-5 subpixel super resolution imaging (Supermode mode)

    图 40SkySat卫星轨道分布图

    Figure 40.SkySat satellite orbit distribution

    图 41SkySat-1探测器光谱成像示意图

    Figure 41.Schematic diagram of spectrum imaging for SkySat-1 detector

    图 42卫星采集RAW图像(左)VS 组合20帧后的超分辨图像(右)[123]

    Figure 42.RAW image acquired by satellite (left) VS super resolution image after 20 frames combination (right)[123]

    图 43原始低分辨率图像

    Figure 43.Raw low-resolution image

    图 44超分辨后结果

    Figure 44.Super resolution results

    图 45原始低分辨率数据[130]

    Figure 45.Raw low-resolution data[130]

    图 46超分辨后结果图[133]

    Figure 46.Super resolution imaging result[133]

    图 47相干孔径合成超分辨原理图[133]

    Figure 47.Schematic diagram of coherent aperture synthesis super resolution imaging[133]

    图 48相干孔径合成超分实验测试场景

    Figure 48.Experimental test scenario of coherent aperture synthesis supermetry

    表 1高分辨率光学遥感卫星光学参数

    Table 1.Optical parameters of high-resolution optical remote sensing satellites

    序号 名称 国家 年份 分辨率/m 轨道/km
    1 QuickBird-2 美国 2001 0.61 450
    2 IGS-1A 日本 2003 1 500
    3 OrbView-3 美国 2003 1 470
    4 Resurs-DK1 俄罗斯 2006 1 360~610
    5 EROS B 以色列 2006 0.7 500
    6 Ofeq-7 以色列 2007 0.5 300~600
    7 GeoEye-1 美国 2008 0.41 681
    8 KH-13 美国 2008 0.07
    9 CartoSat-2 印度 2010 0.8 635
    10 Pleiades-4 法国 2011 0.5 694
    11 Worldview-3 美国 2014 0.3 617
    12 Gaojing-1 中国 2016 0.5 530
    13 Worldview-4 美国 2016 0.25 617
    14 BlackSky-4 美国 2018 0.85 450
    15 Hongqi1-H9 中国 2020 0.75 481.6
    16 GFDM 中国 2020 0.5 643.8
    17 IGS-Optical 7 日本 2020 0.3 485
    18 SkySat-16 美国 2020 0.5 456
    19 JL-GF-02D 中国 2021 0.75 650
    20 WorldView –Legion 美国 预计2022 0.3
    下载: 导出CSV

    表 2JEM-EUSO指标参数

    Table 2.Index parameters of JEM-EUSO

    探测谱段/nm 330~400
    口径/m 2.5
    视场角/(°) ±30
    可观测区域/km2 >1.9×105
    焦面面积/m2 4.5
    像元数 2.0×105
    像元尺寸/mm 4.5
    角分辨率/(°) 0.1
    时间分辨率/μs ≤2.5
    下载: 导出CSV

    表 3成像观测航天器口径参数

    Table 3.Comparison of large aperture imaging observation spacecraft

    参数 口径/m 主镜 面密度/(kg·m−2) 运行温度/K
    JWST 6.5 分块 20 50
    HST 2.4 单体 180 300
    “赫歇尔空间望远镜” 3.5 单体 21.8 90
    KH-11 侦察卫星 2.4 单体 不详 常温
    KH-12侦察卫星 约3.3 单体 不详 常温
    下载: 导出CSV

    表 4JWST 航天器基本情况

    Table 4.Basic parameters of JWST

    参数 基本情况
    质量 总质量约6500 kg,主镜质量约705 kg
    功率/W 2000
    最大数据速率/(Mbit·s−1) 28
    主镜 直径6.5 m,由 18 块镀金六边形铍镜组成,
    每个镜块的直径为1.32 m,焦距为131.4 m
    遮阳板 5层可展开遮阳板,展开约21.2 m×14.2 m
    观测波长 可见光、近红外、中红外(0.6~28.5 μm)
    光学分辨率 大约0.1
    仪器 近红外相机、近红外光谱仪、中红外仪器、带
    有精巧导航系统的近红外成像仪与无缝光谱仪
    轨道 日地拉格朗日L2点晕轨道
    工作温度/°C −235
    任务寿命 5年,目标10年以上
    下载: 导出CSV

    表 5不同类型遥感成像技术总结

    Table 5.Summary of different types of remote sensing imaging technology

    序号 技术名称 优点 缺点
    1 大口径单体光学遥感成像技术 技术成熟度高、
    成像分辨率高
    口径受限、系统精密、加工、装调
    难度大
    2 单体衍射元件成像系统 系统衍射效率高 成像质量低、衍射元件复杂
    3 空间展开式分块镜拼接主镜技术 易满足发射要求、可实现分辨率高 设计难度大、镜面调整难度大
    4 光学综合孔径成像系统 可实现大口径成像、
    系统结构分布
    式灵活布置
    子孔径共相位调整难度大
    5 分块式平板光电成像探测系统 系统集成度高、可实现轻小型化 成像分辨率较低、加工工艺复杂
    6 器件亚像素
    拼接技术
    可实现超分辨率成像、可行性高 分辨率提升有限
    7 多帧超分辨率成像技术 可实现超分辨率成像、技术成熟 分辨率提升有限、时间分辨率低
    8 计算超分主动探测 可实现超分辨率
    成像、系统可灵活
    分布式构型
    远距离对主动光源功率要求过高、易受噪声影响
    下载: 导出CSV
  • [1] 何国金, 李克鲁, 胡德永, 等. 多卫星遥感数据的信息融合: 理论、方法与实践[J]. 中国图象图形学报,1999,4(9):744-750.

    HE G J, LI K L, HU D Y,et al. Information fusion of multisensor satellite remote sensing data: theory, methodology and experiment[J].Journal of Image and Graphics, 1999, 4(9): 744-750. (in Chinese)
    [2] HUANG J P, YU H P, GUAN X D,et al. Accelerated dryland expansion under climate change[J].Nature Climate Change, 2016, 6(2): 166-171.doi:10.1038/nclimate2837
    [3] FAN Y D, WEN Q, CHEN SH R. Engineering survey of the environment and disaster monitoring and forecasting small satellite constellation[J].International Journal of Digital Earth, 2012, 5(3): 217-227.doi:10.1080/17538947.2011.648540
    [4] ZHANG P, HU X P, LU Q F,et al. FY-3E: the first operational meteorological satellite mission in an early morning orbit[J].Advances in Atmospheric Sciences, 2022, 39(1): 1-8.doi:10.1007/s00376-021-1304-7
    [5] MARTIN S.An Introduction to Ocean Remote Sensing[J].Oceanography, 2005, 18(3): 86-89.doi:10.5670/oceanog.2005.36
    [6] 裴照宇, 侯军, 王琼. 光学技术在中国月球和深空探测中的应用(特约)[J]. 红外与 工程,2020,49(5):20201002.doi:10.3788/irla.2_invited-peizhaoyu

    PEI ZH Y, HOU J, WANG Q. Applications of optical technology in lunar and deep space exploration in China (Invited)[J].Infrared and Laser Engineering, 2020, 49(5): 20201002. (in Chinese)doi:10.3788/irla.2_invited-peizhaoyu
    [7] 曲宏松, 金光, 张叶. “Next View计划”与光学遥感卫星的发展趋势[J]. 中国光学与应用光学,2009,2(6):467-476.

    QU H S, JIN G, ZHANG Y. NextView program and progress in optical remote sensing satellites[J].Chinese Journal of Optics and Applied Optics, 2009, 2(6): 467-476. (in Chinese)
    [8] BRANDTBERG T, WARNER T.High-spatial-resolution remote sensing[M]//SHAO G F, REYNOLDS K M. Computer Applications in Sustainable Forest Management. Netherlands: Springer, 2006: 19-41.
    [9] BENEDIKTSSON J A, CHANUSSOT J, MOON W M. Very high-resolution remote sensing: challenges and opportunities [Point of View][J].Proceedings of the IEEE, 2012, 100(6): 1907-1910.doi:10.1109/JPROC.2012.2190811
    [10] AKUMU C E, AMADI E O, DENNIS S. Application of drone and WorldView-4 satellite data in mapping and monitoring grazing land cover and pasture quality: pre- and post-flooding[J].Land, 2021, 10(3): 321.doi:10.3390/land10030321
    [11] TU T M, HUANG P S, HUNG C L,et al. A fast intensity–hue–saturation fusion technique with spectral adjustment for IKONOS imagery[J].IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 309-312.doi:10.1109/LGRS.2004.834804
    [12] AGUILAR M A, DEL MAR SALDAÑA M, AGUILAR F J,et al. Assessing geometric accuracy of the orthorectification process from GeoEye-1 and WorldView-2 panchromatic images[J].International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 427-435.doi:10.1016/j.jag.2012.06.004
    [13] ASADZADEH S, DE SOUZA FILHO C R. Investigating the capability of WorldView-3 superspectral data for direct hydrocarbon detection[J].Remote Sensing of Environment, 2016, 173: 162-173.doi:10.1016/j.rse.2015.11.030
    [14] NGUYEN T T H, PHAM T A, LUONG T P. Estimate tropical forest stand volume using SPOT 5 satellite image[J].IOP Conference Series:Earth and Environmental Science, 2021, 652(1): 012016.doi:10.1088/1755-1315/652/1/012016
    [15] 曹福成. 高分系列遥感卫星布设中国太空“慧眼”——我国高分专项建设回眸[J]. 中国军转民,2015(1):28-33.doi:10.3969/j.issn.1008-5874.2015.01.006

    CAO F CH. The high-score series of remote sensing satellites is deployed in China’s Space “Wise Eye” - a review of China's high-score special construction[J].Defense Industry Conversion in China, 2015(1): 28-33. (in Chinese)doi:10.3969/j.issn.1008-5874.2015.01.006
    [16] 曾文, 林辉, 李新宇, 等. 基于高景一号遥感影像的林地信息提取[J]. 中南林业科技大学学报,2020,40(7):32-40.doi:10.14067/j.cnki.1673-923x.2020.07.005

    ZENG W, LIN H, LI X Y,et al. Study on extracting forest information based on SV-1 image[J].Journal of Central South University of Forestry&Technology, 2020, 40(7): 32-40. (in Chinese)doi:10.14067/j.cnki.1673-923x.2020.07.005
    [17] 张召才. 吉林一号卫星组星[J]. 卫星应用,2015(11):1.

    ZHANG ZH C. Jilin No. 1 satellite group[J].Satellite Application, 2015(11): 1. (in Chinese)
    [18] CASOLINO M, PICOZZA P. Launch and commissioning of the PAMELA experiment on board the resurs-DK1 satellite[J].Advances in Space Research, 2008, 41(12): 2064-2070.doi:10.1016/j.asr.2007.06.062
    [19] KRISHNA B G, SRINIVASAN T P, SRIVASTAVA P K. An integrated approach for topographical mapping from space using Cartosat-1 and Cartosat-2 imagery[C]//ISPRS Congress 2008. 2008.
    [20] TU T M, HSU C L, TU P Y,et al. An adjustable pan-sharpening approach for IKONOS/QuickBird/GeoEye-1/WorldView-2 imagery[J].IEEE Journal Selected Topics in Applied Earth Observations and Remote Sensing, 2012, 5(1): 125-134.doi:10.1109/JSTARS.2011.2181827
    [21] MURTHY K, SHEARN M, SMILEY B D,et al. SkySat-1: Very high-resolution imagery from a small satellite[J].Proceedings of SPIE, 2014, 9241: 92411e.
    [22] LEVIN N, JOHANSEN K, HACKER J M,et al. A New source for high spatial resolution night time images —— the EROS-B Commercial Satellite[J].Remote Sensing of Environment, 2014, 149: 1-12.doi:10.1016/j.rse.2014.03.019
    [23] BEN-DAVID A. Ofeq-7 bolsters Israel's intelligence coverage[J].Jane's Defence Weekly, 2007, 44(25): 17.
    [24] LIU J F, WANG H J, SUN D W,et al. On-orbit adjustment and compensation for large aperture optical system[J].Acta Optica Sinica,34(3):, 0322, 005: 2014.
    [25] PANG ZH H, FAN X W, CHEN Q F,et al. Influence of surface-profile error of larger mirror on aberrations characteristics of optical system[J].Acta Optica Sinica, 2013, 33(4): 0422002.doi:10.3788/AOS201333.0422002
    [26] LIU SH T, HU R, LI Q H,et al. Topology optimization-based lightweight primary mirror design of a large-aperture space telescope[J].Applied Optics, 2014, 53(35): 8318-8325.doi:10.1364/AO.53.008318
    [27] HU R, LIU SH T, LI Q H. Topology-optimization-based design method of flexures for mounting the primary mirror of a large-aperture space telescope[J].Applied Optics, 2017, 56(15): 4551-4560.doi:10.1364/AO.56.004551
    [28] YI K, MA P, QIU H,et al. Progress on large aperture transport mirrors[J].Optics and Precision Engineering, 2016, 24(12): 2902-2907.doi:10.3788/OPE.20162412.2902
    [29] 常君磊, 李庆林, 李富强, 等. 航天光学遥感探测器滤光片环境考核方法[J]. 航天器环境工程,2018,35(1):87-91.doi:10.3969/j.issn.1673-1379.2018.01.016

    CHANG J L, LI Q L, LI F Q,et al. Environmental adaptability assessment of the filter of space optical remote sensor detector[J].Spacecraft Environment Engineering, 2018, 35(1): 87-91. (in Chinese)doi:10.3969/j.issn.1673-1379.2018.01.016
    [30] ZHENG D H, CHEN L, ZHU W H. Research on adjusting and testing of off-axis paraboloid mirror with large aperture[J].Proceedings of SPIE, 2016, 9684: 968406.
    [31] MATHEW L M, DEEPAK B P, SABU B. Design and analysis of a metallic Ogive payload fairing for a new generation launch vehicle[J].IOSR Journal of Mechanical and Civil Engineering, 2016, 13(5): 99-103.
    [32] GUO J, GONG D P, ZHU L,et al. Calculation of overlapping pixels in interleaving assembly of CCD focal plane of mapping camera[J].Optics and Precision Engineering, 2013, 21(5): 1251-1257.doi:10.3788/OPE.20132105.1251
    [33] ZHANG Y L, LU B, ZHANG W T,et al. A new method for detecting moving objects in video[J].Journal of University of Electronic Science and Technology of China, 2019, 48(1): 46-52.
    [34] LIN H B, BO Y CH, WANG J D,et al. Research progress in super-resolution mapping from remotely sensed imagery[J].Journal of Image and Graphics, 2011, 16(4): 495-502.
    [35] SICA L. Effects of nonredundance on a synthetic-aperture imaging system[J].Journal of the Optical Society of America A, 1993, 10(4): 567-572.doi:10.1364/JOSAA.10.000567
    [36] MACKENZIE C, SWEETMAN B. Snakes and lasers[J].Aviation Week & Space Technology, 2012.
    [37] MATTHEW F, MATTHEW R, DOUGLAS E,et al. The future of Earth observation in hydrology[J].Hydrology and Earth System Sciences, 2017, 21(7): 3879-3914.
    [38] 吴同舟, 王浩, 周峰, 等. 基于月球观测的“高分四号”卫星相机在轨MTF测试[J]. 航天返回与遥感,2019,40(1):41-49.doi:10.3969/j.issn.1009-8518.2019.01.005

    WU T ZH, WANG H, ZHOU F,et al. The Lunar trail of GF-4 satellite and on-orbit knife-edge measurements of MTF[J].Spacecraft Recovery&Remote Sensing, 2019, 40(1): 41-49. (in Chinese)doi:10.3969/j.issn.1009-8518.2019.01.005
    [39] 童旭东. 中国高分辨率对地观测系统重大专项建设进展[J]. 遥感学报,2016,5:775-780.

    TONG X D. Progress in the construction of chinese major special project on high-resolution earth observation system[J].Journal of Remote Sensing, 2016, 5: 775-780. (in Chinese)
    [40] 郭疆. 碳化硅大口径空间反射镜设计与制造研究[D]. 长春: 吉林大学, 2019.

    GUO J. Research on design and manufacturing of large aperture space mirror of silicon carbide[D]. Changchun: Jilin University, 2019.
    [41] 邵梦旗. 空间相机光机结构集成优化设计方法研究[D]. 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021. DOI:10.27522/d.cnki.gkcgs.2021.000079.

    SHAO M Q, Space camera optical structure integration optimization design method research[D]. University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics Physics, Chinese Academy of Sciences), 2021. DOI:10.27522/d.cnki.gkcgs.2021.000079.
    [42] 汪逸群, 王龙, 郭万存, 等. 空间多用途双面反射镜的设计与制备[J]. 光学学报,2015,35(4):0428001.doi:10.3788/AOS201535.0428001

    WANG Y Q, WANG L, GUO W C,et al. Design and manufacture of space all-purpose double-faced reflective mirror[J].Acta Optica Sinica, 2015, 35(4): 0428001. (in Chinese)doi:10.3788/AOS201535.0428001
    [43] JAHNS J J. TURUNEN, F. W (eds. ),Diffractive Optics for Industrial and Commercial Applications[M], Berlin: Akademie Verlag, , Germany, 1997: 426
    [44] MADSEN C K. Linking diffractive and geometrical optics surface scattering at a fundamental level[J].Optics and Photonics Journal, 2022, 12(1): 1-17.doi:10.4236/opj.2022.121001
    [45] DUFRESNE E R, GRIER D G. Optical tweezer arrays and optical substrates created with diffractive optics[J].Review of Scientific Instruments, 1998, 69(5): 1974-1977.doi:10.1063/1.1148883
    [46] ATCHESON P D, STEWART C, DOMBER J,et al. MOIRE: Initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes[J].Proceedings of SPIE, 2012, 8442: 844221.doi:10.1117/12.925413
    [47] ATCHESON P, DOMBER J, WHITEAKER K,et al. MOIRE: Ground demonstration of a large aperture diffractive transmissive telescope[J].Proceedings of SPIE, 2014, 9143: 91431W.
    [48] 赵新龙, 成志铎, 刘君. 复杂战场环境导弹发射装置隐身防护技术研究[J]. 现代防御技术,2016(1):146-150,160.

    ZHAO X L, CHENG Z D, LIU J. Research on stealth protection technology for missile launchers in complex battlefield environments[J].Modern Defence Technology, 2016(1): 146-150,160. (in Chinese)
    [49] ATCHESON PAUL D. MOIRE: initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes[J]. 2012, 8442 : 844221-844221-14.
    [50] DOMBER J L, PAUL D A, JEFF K. MOIRE: ground test bed results for a large membrane telescope[C]. Spacecraft Structures Conference. 2014.
    [51] 王若秋.基于衍射成像系统的薄膜元件关键技术研究[D]. 中国科学院长春光学精密机械与物理研究所, 2017.

    WANG R Q. Key Technology research on thin film components based on diffraction imaging system[D]. University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics Physics, Chinese Academy of Sciences), 2017.
    [52] DOMBER J L, ATCHESON P D, KOMMERS J. MOIRE: Ground test bed results for a large membrane telescope[C]//Spacecraft Structures Conference. 2014.
    [53] TANDY W D, COPP T, CAMPBELL L,et al.. MOIRE gossamer space telescope-membrane analysis[C]//Spacecraft Structures Conference. 2014.
    [54] STAGUHN J G, BENFORD D J, ALLEN C A,et al. Instrument performance of GISMO, a 2 millimeter tes bolometer camera used at the IRAM 30 m telescope[J].Proceedings of SPIE, 2008, 7020: 702004.doi:10.1117/12.789764
    [55] 郑耀辉. 空间薄膜衍射望远镜主镜展开技术研究[D]. 中国科学院大学(中国科学院西安光学精密机械研究所), 2016.

    ZHENG Y H. Space thin-film diffraction telescope primary mirror unfolding technique study[D]. Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2016.
    [56] CATALANO O. Extreme Universe Space Observatory-EUSO: An innovative project for the detection of extreme energy cosmic rays and neutrinos[J].Il Nuovo Cimento C, 2001, 24(3): 445-469.
    [57] SANTANGELO A, PETROLINI A. Observing ultra-high-energy cosmic particles from space:s-EUSO, super-extreme universe space observatory mission[J].New Journal of Physics, 2009, 11(6): 065010.doi:10.1088/1367-2630/11/6/065010
    [58] PETROLINI A. The extreme universe space observatory (EUSO) instrument[J].Nuclear Physics B - Proceedings Supplements, 2002, 113(1-3): 329-336.doi:10.1016/S0920-5632(02)01860-1
    [59] TAKIZAWA Y, EBISUZAKI T, KAWASAKI Y,et al. JEM-EUSO: Extreme universe space observatory on JEM/ISS[J].Nuclear Physics B-Proceedings Supplements, 2007, 166: 72-76.doi:10.1016/j.nuclphysbps.2006.12.007
    [60] ANDERSEN G, ASMOLOV O, DEARBORN M E,et al. FalconSAT-7: a membrane photon sieve CubeSat solar telescope[J].Proceedings of SPIE, 2012, 8442: 84421C.
    [61] ANDERSEN G P, ASMOLOVA O. FalconSAT-7: a membrane space telescope[J].Proceedings of SPIE, 2014, 9143: 91431X.
    [62] ANDERSEN G, ASMOLOVA O, MCHARG M G,et al. FalconSAT-7: a membrane space solar telescope[J].Proceedings of SPIE, 2016, 9904: 99041P.
    [63] DEARBORN M, ANDERSEN G, MCHARG M G,et al.. FALCONSAT-7: A Deploy Able Solar Telescope Mission[C]//28th Annual AIAA/USU Conference of Small Satellites, 2012.
    [64] 郭明. 卫星大尺度展开机构地面测控系统的设计与实现[D]. 哈尔滨工业大学, 2017.

    GUO M. Design and implementation of a ground-based measurement and control system for large scale satellite deployment mechanism[D]. Harbin Institute of Technology, 2017.
    [65] HYDE R A. Eyeglass. 1. Very large aperture diffractive telescopes[J].Applied Optics, 1999, 38(19): 4198-4212.doi:10.1364/AO.38.004198
    [66] HYDE R A, DIXIT S N, WEISBERG A H,et al. Eyeglass: a very large aperture diffractive space telescope[J].Proceedings of SPIE, 2002, 4849: 28-39.doi:10.1117/12.460420
    [67] HYDE R A, DIXIT S N, WEISBERG A H,et al. . Large aperture diffractive space telescope[J].Proceedings of SPIE - The International Society for Optical Engineering, 2001.
    [68] HYDE R. Eyeglass large aperture, lightweight space optics FY2000 - FY2002 LDRD strategic initiative[R]. Livermore: Lawrence Livermore National Lab. , 2003.
    [69] 王昊, 康福增, 赵卫, 谢永军. 一种红外衍射望远镜的光学设计[J]. 红外与毫米波学报,2016,35(4):425-429.

    WANG H, KANG F Z, ZHAO W, XIE Y J. Optical design of an infrared diffraction telescope[J].Journal of Infrared and Millimeter Waves, 2016, 35(4): 425-429. (in Chinese)
    [70] 陈晓丽, 傅丹鹰. 大口径甚高分辨率空间光学遥感器技术途径探讨[J]. 航天返回与遥感,2003,24(4):19-24.doi:10.3969/j.issn.1009-8518.2003.04.005

    CHEN X L, FU D Y. Solutions for space optical remote sensor with large aperture and ultrahigh resolution[J].Spacecraft Recovery&Remote Sensing, 2003, 24(4): 19-24. (in Chinese)doi:10.3969/j.issn.1009-8518.2003.04.005
    [71] WANG R Q, ZHANG ZH Y, GUO CH L,et al. Effects of fabrication errors on diffraction efficiency for a diffractive membrane[J].Chinese Optics Letters, 2016, 14(12): 120501.doi:10.3788/COL201614.120501
    [72] XUE CH X, CUI Q F. Design of multilayer diffractive optical elements with polychromatic integral diffraction efficiency[J]Optics Letters, 2010, 35(7): 986-988.
    [73] 刘民哲, 刘华, 许文斌, 等. 用于空间望远镜的膜光子筛[J]. 光学 精密工程,2014,22(8):2127-2134.doi:10.3788/OPE.20142208.2127

    LIU M ZH, LIU H, XU W B,et al. Membrane photon sieve for space telescope[J].Optics and Precision Engineering, 2014, 22(8): 2127-2134. (in Chinese)doi:10.3788/OPE.20142208.2127
    [74] 张健, 栗孟娟, 阴刚华, 等. 用于太空望远镜的大口径薄膜菲涅尔衍射元件[J]. 光学 精密工程,2016,24(6):1289-1296.doi:10.3788/OPE.20162406.1289

    ZHANG J, SU M Y, YIN G H,et al. Large-diameter membrane fresnel diffraction elements for space telescope[J].Optics and Precision Engineering, 2016, 24(6): 1289-1296. (in Chinese)doi:10.3788/OPE.20162406.1289
    [75] DANIEL J. SCHROEDER.Reflecting Telescopes in Astronomical Optics(Second Edition) [M]. Elsevier Inc, 2000, 112-163.
    [76] NICHOLAS G, KEDAR K. Digital Binary MEMS Wavefront Control, US, 8379292-B2[P]. 2013-02-19.
    [77] LIESENER J, HUPFER W J, GEHNER R,et al. Tests on micromirror arrays for adaptive optics[J].Proceedings of SPIE, 2004, 5553: 319-329.doi:10.1117/12.558679
    [78] DEKANY R G, MACMARTIN D G, CHANAN G A,et al. Advanced segmented silicon space telescope (ASSIST)[J].Proceedings of SPIE, 2002, 4849: 103-111.doi:10.1117/12.460563
    [79] AGRAWAL B, KUBBY J. Applications of MEMS in segmented mirror space telescopes[J].Proceedings of SPIE, 2011, 7931: 793102.
    [80] MARK C. The James Webb Space Telescope[J].Advances in Space Research, 2008, 41(12): 1983-1991.
    [81] DEAN B H, ARONSTEIN D L, SMITH J S,et al. Phase retrieval algorithm for JWST flight and testbed telescope[J].Proceedings of SPIE, 2006, 6265: 626511.doi:10.1117/12.673569
    [82] WRIGHT G S, RIEKE G H, COLINA L,et al. The JWST MIRI instrument concept[J].Proceedings of SPIE, 2004, 5487: 653-663.doi:10.1117/12.551717
    [83] FREESE K, ILIE C, SPOLYAR D,et al. Supermassive dark stars: detectable in JWST[J].The Astrophysical Journal, 2010, 716(2): 1397-1407.doi:10.1088/0004-637X/716/2/1397
    [84] THOMAS E.Towards 1 m Resolution from GEO Executive Summary Report[B]. Thales Alenia Space, Italy, 2010: 1-13.
    [85] BOLCAR M R, FEINBERG L, FRANCE K,et al. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study[J].Proceedings of SPIE, 2016, 9904: 99040J.
    [86] STAHL H P, HOPKINS R C. SLS Launched missions concept studies for LUVOIR mission[J].Proceedings of SPIE, 2015, 9602: 960206.
    [87] FRANCE K, FLEMING B, WEST G,et al. The LUVOIR ultraviolet multi-object spectrograph (LUMOS): instrument definition and design[J].Proceedings of SPIE, 2017, 10397: 1039713.
    [88] MENNESSON B, GAUDI S, SEAGER S,et al. The Habitable Exoplanet (HabEx) imaging mission: preliminary science drivers and technical requirements[J].Proceedings of SPIE, 2016, 9904: 99040L.
    [89] 陈晓丽, 杨秉新, 王永辉, 等. 空间可展开光学系统主镜分块方案研究[J]. 航天返回与遥感,2008,29(1):28-33.doi:10.3969/j.issn.1009-8518.2008.01.006

    CHEN X L, YANG B X, WANG Y H,et al. Segmentation of primary mirror for the space deployable optical system[J].Spacecraft Recovery&Remote Sensing, 2008, 29(1): 28-33. (in Chinese)doi:10.3969/j.issn.1009-8518.2008.01.006
    [90] 郭崇岭, 陈传志, 陈金宝, 等. 空间光学望远镜在轨建造中的结构机构技术[J]. 宇航学报,2022,43(2):158-166.doi:10.3873/j.issn.1000-1328.2022.02.003

    GUO CH L, CHEN CH ZH, CHEN J B,et al. Structure and mechanism technology of in-space manufacturing space optical telescope[J].Journal of Astronautics, 2022, 43(2): 158-166. (in Chinese)doi:10.3873/j.issn.1000-1328.2022.02.003
    [91] 金建高, 阮宁娟, 苏云, 等. 空间大型光学遥感器主镜问题解决方法探讨[J]. 空间电子技术,2016,13(2):20-25,43.doi:10.3969/j.issn.1674-7135.2016.02.005

    JIN J G, RUAN N J, SU Y,et al. Discussion for solution of huge space remote sensor primary mirror issue[J].Space Electronic Technology, 2016, 13(2): 20-25,43. (in Chinese)doi:10.3969/j.issn.1674-7135.2016.02.005
    [92] 乔彦峰, 刘坤, 段相永. 光学合成孔径成像技术及发展现状[J]. 中国光学与应用光学,2009,2(3):175-183.

    QIAO Y F, LIU S, DUAN X Y. Optical synthetic aperture imaging techniques and development[J].Chinese Journal of Optics and Applied Optics, 2009, 2(3): 175-183. (in Chinese)
    [93] 范伟军, 周必方, 王海涛. 光学综合孔径成像中的傅里叶相位研究[J]. 光学学报,2004,24(3):408-412.

    FAN W J, ZHOU B F, WANG H T. Research of Fourier phase in optical synthetic-aperture imaging technique[J].Acta Optica Sinica, 2004, 24(3): 408-412. (in Chinese)
    [94] LUCKE R L, RICKARD L J. Photon-limited synthetic-aperture imaging for planet surface studies[J].Applied Optics, 2002, 41(24): 5084-5095.doi:10.1364/AO.41.005084
    [95] LIU ZH, WANG SH Q, RAO CH H. The Co-phasing detection method for sparse optical synthetic aperture systems[J].Chinese Physics B, 2012, 21(6): 069501.doi:10.1088/1674-1056/21/6/069501
    [96] RHODES W T. Digital processing of synthetic aperture optical imagery[J].Optical Engineering, 1974, 13(3): 267-274.
    [97] WU Y, HUI M, LI W Q,et al. MTF improvement for optical synthetic aperture system via mid-frequency compensation[J].Optics Express, 2021, 29(7): 10249-10264.doi:10.1364/OE.420512
    [98] CHUNG S J, MILLER D W, DE WECK O L. ARGOS testbed: study of multidisciplinary challenges of future spaceborne interferometric arrays[J].Optical Engineering, 2004, 43(9): 2156-2167.doi:10.1117/1.1779232
    [99] WONG M H. A dedicated space observatory for time-domain solar system science[Z].AAS/Division for Planetary Sciences Meeting Abstracts. 2009.
    [100] CHUNG S J, LO B D M, MILLER D W,et al. . Multidisciplinary Control of a Sparse Interferometric Array Satellite Testbed[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA, 2013.
    [101] LAWSON P R, LAY O P, MARTIN S R,et al. Terrestrial planet finder interferometer 2007—2008 progress and plans[J].Proceedings of SPIE, 2008, 7013: 70132N.
    [102] LAWSON P R, LAY O P, MARTIN S R,et al. Terrestrial planet finder interferometer: 2006—2007 progress and plans[J].Proceedings of SPIE, 2007, 6693: 669308.doi:10.1117/12.734914
    [103] BEICHMAN C, LAWSON P, LAY O,et al. Status of the terrestrial planet finder interferometer (TPF-I)[J].Proceedings of SPIE, 2006, 6268: 62680S.doi:10.1117/12.673583
    [104] LAWSON P R, AHMED A, GAPPINGER R O,et al. Terrestrial planet finder interferometer technology status and plans[J].Proceedings of SPIE, 2006, 6268: 626828.doi:10.1117/12.670318
    [105] GUARNIERI A M, BOMBACI O, CATALANO T F,et al. ARGOS: A fractioned geosynchronous SAR[J].Acta Astronautica, 2019, 164: 444-457.doi:10.1016/j.actaastro.2015.11.022
    [106] QIAN J H, WU X Y, LIU H W,et al. The structure research and design for beam steering and adjustment in Golay3 sparse-aperture imaging system[J].Applied Sciences, 2022, 12(8): 4003.
    [107] STUBBS D, DUNCAN A, PITMAN J T,et al. Multiple instrument distributed aperture sensor (MIDAS) evolved design concept[J].Proceedings of SPIE, 2004, 5550: 391-398.doi:10.1117/12.560319
    [108] PITMAN J, DUNCAN A, STUBBS D,et al. Multiple instrument distributed aperture sensor (MIDAS) for remote sensing[J].Proceedings of SPIE, 2004, 5570: 168-180.
    [109] SCUDERI S, GIULIANI A, PARESCHI G,et al. The ASTRI Mini-Array of Cherenkov telescopes at the Observatorio del Teide[J].Journal of High Energy Astrophysics, 2022, 35: 52-68.doi:10.1016/j.jheap.2022.05.001
    [110] SUZUMOTO R, IKARI S, MIYAMURA N,et al.. Experimental study for synthetic aperture telescope using formation flying micro-satellites for high-frequency and high-resolution GEO remote sensing[C].34th Annual Small Satellite Conference, 2020.
    [111] WANG D Y. Experimental study on imaging and image restoration of optical sparse aperture systems[J].Optical Engineering, 2007, 46(10): 103201.doi:10.1117/1.2799512
    [112] 马佳. 欧洲启动达尔文计划搜捕地外生命[J]. 今日科苑,2007(15):12-14.

    MA J. Europe launched the darwin plan to hunt for extraterrestrial life[J].Modern Science, 2007(15): 12-14. (in Chinese)
    [113] 周程灏, 王治乐, 朱峰. 大口径光学合成孔径成像技术发展现状[J]. 中国光学,2017,10(1):25-38.

    ZHOU CH H, WANG ZH Y, ZHU F. Status of development of large-aperture optical synthetic aperture imaging technology[J].China Optics, 2017, 10(1): 25-38. (in Chinese)
    [114] SUZUMOTO R, IKARI S, MIYAMURA N,et al.. Experimental study for synthetic aperture telescope using formation flying micro-satellites for high-frequency and high-resolution GEO remote sensing[C].34th Annual Small Satellite Conference. 2020.
    [115] 徐伟, 金光, 王家骐. 吉林一号轻型高分辨率遥感卫星光学成像技术[J]. 光学 精密工程,2017,25(8):1969-1978.doi:10.3788/OPE.20172508.1969

    XU W, JIN G, WANG J Q. Optical imaging technology of JL-1 lightweight high resolution multispectral remote sensing satellite[J].Optics and Precision Engineering, 2017, 25(8): 1969-1978. (in Chinese)doi:10.3788/OPE.20172508.1969
    [116] DUNCAN A L, KENDRICK R L. Segmented planar imaging detector for electro-optic reconnaissance: US, 8913859[P]. 2014-12-16.
    [117] DUNCAN A L, KENDRICK R L. Segmented planar imaging detector for electro-optic reconnaissance (SPIDER) Zoom: US, 10012827[P]. 2018-07-03.
    [118] LV G M, LI Q, CHEN Y T,et al. An improved scheme and numerical simulation of segmented planar imaging detector for electro-optical reconnaissance[J].Optical Review, 2019, 26(6): 664-675.doi:10.1007/s10043-019-00548-w
    [119] CHU Q H, SHEN Y J, YUAN M,et al. Numerical simulation and optimal design of segmented planar imaging detector for electro-optical reconnaissance[J].Optics Communications, 2017, 405: 288-296.doi:10.1016/j.optcom.2017.08.021
    [120] 余恭敏, 晋利兵, 周峰, 等. 分块式平面光电侦察成像系统发展概述[J]. 航天返回与遥感,2018,39(5):1-9.doi:10.3969/j.issn.1009-8518.2018.05.001

    YU G M, JIN L B, ZHOU F,et al. A review on development of segmented planar imaging detector for electro-optical reconnaissance system[J].Spacecraft Recovery&Remote Sensing, 2018, 39(5): 1-9. (in Chinese)doi:10.3969/j.issn.1009-8518.2018.05.001
    [121] BADHAM K, KENDRICK R, WUCHENICH D,et al.. Photonic integrated circuit-based imaging system for SPIDER[C].2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), IEEE, 2017.
    [122] DESEILLIGNY M P, PAPARODITIS N. A multiresolution and optimization-based image matching approach: an application to surface reconstruction from Spot5-hrs stereo imagery[C]//Proc of the ISPRS Conference Topographic Mapping from Space. US, 2006.
    [123] MURTHY K, SHEARN M, SMILEY B D,et al. SkySat-1: very high-resolution imagery from a small satellite[J].Proceedings of SPIE, 2014, 9241: 92411E.
    [124] DINARDJ A, ANFLO K, FRIEDHOFF P. On-orbit commissioning of high performance green propulsion (HPGP) in the SkySat constellation[C].Small Satellite Conference, 2017.
    [125] 周宇, 王鹏, 傅丹膺. SkySat卫星的系统创新设计及启示[J]. 航天器工程,2015,24(5):91-98.doi:10.3969/j.issn.1673-8748.2015.05.014

    ZHOU Y, WANG P, FU D Y,et al. System innovation and enlightenment of SkySat[J].Spacecraft Engineering, 2015, 24(5): 91-98. (in Chinese)doi:10.3969/j.issn.1673-8748.2015.05.014
    [126] JOHANSEN K, DUNNE A F, TU Y H,et al. Monitoring coastal water flow dynamics using sub-daily high-resolution SkySat satellite and UAV-based imagery[J].Water Research, 2022, 219: 118531.doi:10.1016/j.watres.2022.118531
    [127] 李峰, 杨雪, 鲁啸天, 等. 面向星载CMOS相机的超时相工作方式研究[J]. 遥感学报,2021,25(1):514-525.

    LI F, YANG X, LU X T,et al. A new hyper-temporal imaging mode for spaceborne CMOS cameras[J].Journal of Remote Sensing, 2021, 25(1): 514-525. (in Chinese)
    [128] 谢伟, 陈皓, 秦前清. 基于多帧视频序列的盲超分辨率影像重建[J]. 数据采集与处理,2011,26(1):1-7.doi:10.3969/j.issn.1004-9037.2011.01.001

    XIE W, CHEN H, QIN Q Q. Blind super-resolution image reconstruction based on multiframe video sequence[J].Journal of Data Acquisition&Processing, 2011, 26(1): 1-7. (in Chinese)doi:10.3969/j.issn.1004-9037.2011.01.001
    [129] ZHENG G A, HORSTMEYER R, YANG C H E. Wide-field, high-resolution Fourier ptychographic microscopy[J].Nature Photonics, 2013, 7(9): 739-745.doi:10.1038/nphoton.2013.187
    [130] HOLLOWAY J, WU Y, SHARMA M K,et al. SAVI: Synthetic apertures for long-range, subdiffraction-limited visible imaging using fourier ptychography[J].Science Advances, 2017, 3(4): e1602564.
    [131] DONG S Y, HORSTMEYER R, SHIRADKAR R,et al. Aperture-scanning Fourier ptychography for 3D refocusing and super-resolution macroscopic imaging[J].Optics Express, 2014, 22(11): 13586-13599.doi:10.1364/OE.22.013586
    [132] HOLLOWAY J, ASIF M S, SHARMA M K,et al. Toward long-distance subdiffraction imaging using coherent camera arrays[J].IEEE Transactions on Computational Imaging, 2017, 2(3): 251-265.
    [133] WANG C Y, HU M, TAKASHIMA Y,et al. Snapshot Ptychography on Array cameras[J].Optics Express, 2022, 30(2): 2585-2598.doi:10.1364/OE.447499
    [134] WU J CH, YANG F, CAO L C. Resolution enhancement of long-range imaging with sparse apertures[J].Optics and Lasers in Engineering, 2022, 155: 107068.doi:10.1016/j.optlaseng.2022.107068
    [135] 赵明, 王希明, 张晓慧, 等. 宏观傅里叶叠层超分辨率成像实验研究[J]. 与光电子学进展,2019,56(12):101-107.

    ZHAO M, WANG X M, ZHANG X H,et al. Experimental research on macroscopic Fourier ptychography super-resolution imaging[J].Laser&Optoelectronics Progress, 2019, 56(12): 101-107. (in Chinese)
    [136] 相萌. 宏观傅里叶叠层成像的关键问题研究[D]. 西安: 中国科学院大学, 2021.

    XIANG M. Study on key problems of macroscopic Fourier ptychography imaging[D]. Xi’an: University of Chinese Academy of Sciences, 2021. (in Chinese)
  • 加载中
图(48)/ 表(5)
计量
  • 文章访问数:1200
  • HTML全文浏览量:518
  • PDF下载量:647
  • 被引次数:0
出版历程
  • 收稿日期:2022-04-25
  • 录用日期:2022-07-26
  • 修回日期:2022-05-31
  • 网络出版日期:2022-08-03

目录

    /

      返回文章
      返回
        Baidu
        map