留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非盲图像复原综述

杨航

downloadPDF
杨航. 非盲图像复原综述[J]. , 2022, 15(5): 954-972. doi: 10.37188/CO.2022-0099
引用本文: 杨航. 非盲图像复原综述[J]. , 2022, 15(5): 954-972.doi:10.37188/CO.2022-0099
YANG Hang. Survey of non-blind image restoration[J]. Chinese Optics, 2022, 15(5): 954-972. doi: 10.37188/CO.2022-0099
Citation: YANG Hang. Survey of non-blind image restoration[J].Chinese Optics, 2022, 15(5): 954-972.doi:10.37188/CO.2022-0099

非盲图像复原综述

doi:10.37188/CO.2022-0099
基金项目:中国科学院青年创新促进会(No. 2020220)
详细信息
    作者简介:

    杨 航(1985—),男,吉林农安人,博士,副研究员。2012年于吉林大学获得理学博士学位,2016年至今为中国科学院长春光学精密机械与物理研究所副研究员。主要从事图像复原、图像增强和目标识别与跟踪方面的研究。E-mail:yanghang@ciomp.ac.cn

  • 中图分类号:TP391

Survey of non-blind image restoration

Funds:Supported by Youth Innovation Promotion Association, CAS (No. 2020220)
More Information
  • 摘要:

    非盲图像复原在数学上是一种典型的病态问题,也是计算机视觉领域的重要研究内容之一,其目标是在点扩散函数已知的情况下,由模糊图像估计出清晰图像,其研究重点是在改善图像清晰度和抑制噪声之间做出适当的折衷。 近50年来,非盲图像复原取得了长足的发展,从早期的维纳滤波到当前的深度学习,学者们提出了数以百计的非盲图像复原算法,并应用在各个领域。本文首先介绍非盲图像复原的基本概念和研究意义,然后依据算法的属性对非盲图像复原算法进行分类概括,从总体上将其分为传统方法和深度学习方法,又进一步将传统方法细分为直接法和迭代法,并依据不同算法的模型特征,分析不同类别中主要算法的优缺点,同时结合多种典型实验,比较分析了一些代表性算法的复原性能,最后展望了非盲图像复原算法的发展趋势,归纳了重点研究方向。

  • 图 1线性时不变系统示意图

    Figure 1.Diagram of linear time invariant system

    图 2ForWaRD算法流程图

    Figure 2.Flow chart of ForWaRD algorithm

    图 3基于BM3D的图像复原方法流程图[31]

    Figure 3.Flow chart of image restoration method based on BM3D[31]

    图 4非盲图像复原算法中学习到的字典[68]。(a)Barbara图像复原局部图;(b)学习到的字典。

    Figure 4.Learned dictionary from non-blind image restoration algorithm[68]. (a) Partial restoration image for Barbara image; (b) the learned dictionary

    图 5组建构的图解[71]

    Figure 5.Illustration of group construction[71]

    图 6文献[93]中使用的去噪网络结构

    Figure 6.Denoising Network structure[93]

    图 7基于CV-CNN网络的图像复原框架[97]

    Figure 7.The image restoration framework based on CV-CNN network[97]

    图 8Vasu等人提出的网络结构[115]

    Figure 8.The network structure proposed by Vasu[115]

    表 1实验设置

    Table 1.Experimental settings

    序号 点扩散函数 噪声水平 图像
    1 9 × 9 boxcar BSNR = 40 dB Cameraman
    2 $k(x,y) = 1/({x^2} + {y^2}),x,y = - 7,\cdots,7$ $ {\sigma ^2} = 2 $ Cameraman
    3 $k(x,y) = 1/({x^2} + {y^2}),x,y = - 7,\cdots,7$ $ {\sigma ^2} = 8 $ Cameraman
    4 $k = {[1,4,6,4,1]^{\rm{T}}}[1,4,6,4,1]/256$ $ {\sigma ^2} = 49 $ Lena
    5 Gaussian型点扩散函数,方差为1.6 $ {\sigma ^2} = 2 $ Barbara
    6 Gaussian型点扩散函数,方差为0.4 $ {\sigma ^2} = 64 $ House
    下载: 导出CSV

    表 28种直接法输出ISNR的对比

    Table 2.Comparison of ISNR output by eight methods

    实验
    方法
    1 2 3 4 5 6
    ForWaRD[15] 7.40 6.75 5.07 2.98 0.98 5.52
    ShearDec[21] 7.89 7.55 5.56
    GSM[23] −1.61 6.84 5.29 0.95 5.98
    SV-GSM[24] 7.33 7.45 5.55 1.36 6.02
    LPA-ICI[26] 8.29 7.82 5.98 3.90
    SA-DCT[27] 8.55 8.11 6.33 4.49 1.02 5.96
    SURE-LET[25] 7.84 7.54 5.22 4.42 1.06 4.38
    BM3DDEB[31] 8.34 8.19 6.40 4.81 1.28 7.21
    下载: 导出CSV

    表 3迭代法实验设置

    Table 3.Experimental setup for iterative methods

    序号 点扩散函数 噪声水平
    1 $ k(x,y) = 1/({x^2} + {y^2}),x,y = - 7,\cdots,7 $ ${\sigma ^2} = 2$
    2 $ k(x,y) = 1/({x^2} + {y^2}),x,y = - 7,\cdots,7 $ ${\sigma ^2} = 8 $
    3 9 × 9 boxcar BSNR= 40 dB
    4 $ k = {[1,4,6,4,1]^{\rm{T} } }[1,4,6,4,1]/256 $ ${\sigma ^2} = 49 $
    5 Gaussian型点扩散函数,方差为1.6 ${\sigma ^2} = 2 $
    6 Gaussian型点扩散函数,方差为0.4 ${\sigma ^2} = 64 $
    下载: 导出CSV

    表 4迭代法实验对比 ISNR

    Table 4.Experimental comparison of ISNR (单位:dB)

    实验序号
    1 2 3 4 5 6
    方法 Cameraman
    BM3DDEB[31] 8.19 6.40 8.34 3.34 3.73 4.70
    L0-Abs[62] 7.70 5.55 9.10 2.93 3.49 1.77
    CGMK[36] 7.80 5.49 9.15 2.80 3.54 3.33
    TVMM[34] 7.41 5.17 8.54 2.57 3.36 1.30
    GFD[33] 8.38 6.52 9.73 3.57 4.02 -
    NCSR[70] 8.78 6.69 10.33 3.78 4.60 4.50
    GSR[71] 8.39 6.39 10.08 3.33 3.94 4.76
    IDDBM3D[73] 8.85 7.12 10.45 3.98 4.31 4.89
    LRD[76] 8.90 7.05 10.70 3.99 4.62 4.62
    House
    BM3DDEB[31] 9.32 8.14 10.85 5.13 4.56 7.21
    L0-Abs[62] 8.40 7.12 11.06 4.55 4.80 2.15
    CGMK[36] 8.31 6.97 10.75 4.48 4.97 4.59
    TVMM[34] 7.98 6.57 10.39 4.12 4.54 2.44
    GFD[33] 9.39 7.75 12.02 5.21 5.39
    NCSR[70] 9.96 8.48 13.12 5.81 5.67 6.94
    GSR[71] 10.02 8.56 13.44 6.00 5.95 7.18
    IDDBM3D[73] 9.95 8.55 12.89 5.79 5.74 7.13
    LRD[76] 10.09 8.67 13.49 6.03 6.22 6.74
    Lena
    BM3DDEB[31] 7.95 6.53 7.97 4.81 4.37 6.40
    L0-Abs[62] 6.66 5.71 7.79 4.09 4.22 1.93
    CGMK[36] 6.76 5.37 7.86 3.49 3.93 4.46
    TVMM[34] 6.36 4.98 7.47 3.52 3.61 2.79
    GFD[33] 8.12 6.65 8.97 4.77 4.95 -
    NCSR[70] 8.03 6.54 9.25 4.93 4.86 6.19
    GSR[71] 8.24 6.76 9.43 5.17 4.96 6.57
    IDDBM3D[73] 7.97 6.61 8.91 4.97 4.85 6.34
    LRD[76] 8.25 6.78 9.31 5.13 5.08 6.13
    Barbara
    BM3DDEB[31] 7.80 3.94 5.86 1.90 1.28 5.80
    L0-Abs[62] 3.51 1.53 3.98 0.73 0.81 1.17
    CGMK[36] 2.45 1.34 3.55 0.44 0.81 0.38
    TVMM[34] 3.10 1.33 3.49 0.41 0.75 0.59
    NCSR 7.76 3.64 5.92 2.06 1.43 5.50
    GSR[71] 8.98 4.80 7.15 2.19 1.58 6.20
    IDDBM3D[73] 7.64 3.96 6.05 1.88 1.16 5.45
    LRD[76] 8.31 5.17 6.95 2.34 1.70 5.37
    下载: 导出CSV

    表 5深度学习方法的实验对比

    Table 5.Experimental comparison of deep learning of different methods

    Levin[106] Sun[107] Martin[108]
    σ 1% 3% 5% 1% 5% 1% 5%
    EPLL[82] 34.06 29.09 26.54 32.48 26.78 29.81 24.66
    0.9310 0.8460 0.7785 0.8815 0.6975 0.8383 0.6276
    CSF[84] 31.09 28.01 26.32 31.52 26.62 29.00 24.93
    0.9024 0.8013 0.7427 0.8622 0.6735 0.8230 0.6428
    MLP[89] 32.08 27.00 25.38 31.47 24.65 28.47 24.01
    0.8884 0.7016 0.6330 0.8535 0.5198 0.7977 0.5619
    LDT[109] 31.53 28.39 26.70 30.52 26.71 28.20 24.90
    0.8977 0.8052 0.7468 0.8399 0.6694 0.7922 0.6358
    FCN[94] 33.22 29.49 27.72 32.36 27.67 29.51 25.45
    0.9267 0.8599 0.8142 0.8853 0.7340 0.8339 0.6771
    IRCNN[93] 34.33 30.04 28.51 33.57 27.64 30.63 25.65
    0.9210 0.8156 0.7762 0.8977 0.6884 0.8645 0.6640
    FDN[87] 34.05 29.77 27.94 32.63 27.75 29.93 25.93
    0.9335 0.8583 0.8139 0.8887 0.7319 0.8555 0.6943
    FNBD[88] 34.81 30.63 27.93 31.22 27.63 30.92 25.49
    0.9398 0.8658 0.7759 0.8860 0.7010 0.8799 0.6589
    RGDN[92] 33.96 29.71 27.45 31.25 26.93 29.51 25.33
    0.9395 0.8662 0.7889 0.8869 0.7161 0.8616 0.6688
    VEM[99] 34.31 30.50 28.52 32.73 29.41
    0.9382 0.8798 0.8348 0.8952 0.8055
    DWDN[101] 36.90 32.77 30.77 34.05 31.74
    0.9614 0.9179 0.8857 0.9225 0.8938
    CV-CNN[97] 35.44 30.85 28.80 33.10 29.54
    0.9467 0.8829 0.8381 0.9022 0.8094
    SVMAP[110] 34.51 29.20 31.89 27.25
    0.9273 0.7940 0.8973 0.7550
    下载: 导出CSV
  • [1] STARCK J L, PANTIN E, MURTAGH F. Deconvolution in astronomy: a review[J].Publications of the Astronomical Society of the Pacific, 2002, 114(800): 1051-1069.doi:10.1086/342606
    [2] JAIN A K.Fundamentals of Digital Image Processing[M]. Upper Saddle River: Prentice-Hall, 1989: 1420-1424.
    [3] 沈峘, 李舜酩, 毛建国, 等. 数字图像复原技术综述[J]. 中国图像图形学报,2009,14(9):1764-1775.

    SHEN H, LI SH M, MAO J G,et al. Digital image restoration techniques: a review[J].Journal of Image and Graphics, 2009, 14(9): 1764-1775. (in Chinese)
    [4] 闫敬文, 彭鸿, 刘蕾, 等. 基于L0正则化模糊核估计的遥感图像复原[J]. 光学 精密工程,2014,22(9):2572-2579.doi:10.3788/OPE.20142209.2572

    YAN J W, PENG H, LIU L,et al. Remote sensing image restoration based on zero-norm regularized kernel estimation[J].Optics and Precision Engineering, 2014, 22(9): 2572-2579. (in Chinese)doi:10.3788/OPE.20142209.2572
    [5] 李东升, 陈春晓, 王章立, 等. 基于全局方差和噪声估计的维纳滤波图像的复原方法[J]. 生物医学工程研究,2017,36(4):331-335.doi:10.19529/j.cnki.1672-6278.2017.04.11

    LI D SH, CHEN CH X, WANG ZH L,et al. Wiener filter image restoration based on global variance and noise estimation[J].Journal of Biomedical Engineering Research, 2017, 36(4): 331-335. (in Chinese)doi:10.19529/j.cnki.1672-6278.2017.04.11
    [6] 朱非甲, 金鹏. 面向工业检测的图像快速去直线运动模糊方法[J]. 哈尔滨工业大学学报,2018,50(9):123-129.doi:10.11918/j.issn.0367-6234.201704118

    ZHU F J, JIN P. Fast moving line motion de-blurring for image detection of industrial inspection[J].Journal of Harbin Institute of Technology, 2018, 50(9): 123-129. (in Chinese)doi:10.11918/j.issn.0367-6234.201704118
    [7] 陈灏. 光学稀疏孔径成像系统图像恢复算法研究[D]. 杭州: 浙江大学, 2017.

    CHEN H. Image restoration algorithm for optical sparse aperture systems[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
    [8] 杨航. 图像反卷积算法研究[D]. 长春: 吉林大学, 2012: 3-7.

    YANG H. The study on image deconvolution algorithm[D]. Changsha: Jilin University, 2012: 3-7. (in Chinese)
    [9] HANSEN P C.Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion[M]. Philadelphia: SIAM, 1997.
    [10] FAN J Q, KOO J. Wavelet deconvolution[J].IEEE Transactions on Information Theory, 2002, 48(3): 734-747.doi:10.1109/18.986021
    [11] JOHNSTONE I M, KERKYACHARIAN G, PICARD D,et al. Wavelet deconvolution in a periodic setting[J].Journal of the Royal Statistical Society. Series B, 2004, 66(3): 547-573.doi:10.1111/j.1467-9868.2004.02056.x
    [12] PENSKY M, VIDAKOVIC B. Adaptive wavelet estimator for nonparametric density deconvolution[J].Annals of Statistics, 1999, 27(6): 2033-2053.
    [13] DONOHO D L. Nonlinear solution of linear inverse problems by wavelet–vaguelette decomposition[J].Applied and Computational Harmonic Analysis, 1995, 2(2): 101-126.doi:10.1006/acha.1995.1008
    [14] KALIFA J, MALLAT S, ROUGE B. Deconvolution by thresholding in mirror wavelet bases[J].IEEE Transactions on Image Processing, 2003, 12(4): 446-457.doi:10.1109/TIP.2003.810592
    [15] NEELAMANI R, CHOI H, BARANIUK R. ForWaRD: Fourier-wavelet regularized deconvolution for Ill-conditioned systems[J].IEEE Transactions on Signal Processing, 2004, 52(2): 418-433.doi:10.1109/TSP.2003.821103
    [16] CANDÈS E, DEMANET L, DONOHO D L,et al. Fast discrete curvelet transforms[J].Multiscale Modeling&Simulation, 2006, 5(3): 861-899.
    [17] DO M N, VETTERLI M. The contourlet transform: an efficient directional multiresolution image representation[J].IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106.doi:10.1109/TIP.2005.859376
    [18] EASLEY G R, LABATE D, LIM W Q. Sparse directional image representations using the discrete shearlet transform[J].Applied and Computational Harmonic Analysis, 2008, 25(1): 25-46.doi:10.1016/j.acha.2007.09.003
    [19] DEMANET L, YING L X. Wave atoms and sparsity of oscillatory patterns[J].Applied and Computational Harmonic Analysis, 2007, 23(3): 368-387.doi:10.1016/j.acha.2007.03.003
    [20] NEELAMANI R N, DEFFENBAUGH M, BARANIUK R G. Texas two-step: a framework for optimal multi-input single-output deconvolution[J].IEEE Transactions on Image Processing, 2007, 16(11): 2752-2765.doi:10.1109/TIP.2007.906251
    [21] PATEL V M, EASLEY G R, HEALY D M. Shearlet-based deconvolution[J].IEEE Transactions on Image Processing, 2009, 18(12): 2673-2685.doi:10.1109/TIP.2009.2029594
    [22] YANG H, ZHANG ZH B. Fusion of wave atom-based wiener shrinkage filter and joint non-local means filter for texture-preserving image deconvolution[J].Optical Engineering, 2012, 51(6): 067009.doi:10.1117/1.OE.51.6.067009
    [23] PORTILLA J, SIMONCELLI E. Image restoration using Gaussian scale mixtures in the wavelet domain[C].Proceedings 2003 International Conference on Image Processing,IEEE, 2003: Ⅱ-965.
    [24] GUERRERO-COLON J A, MANCERA L, PORTILLA J. Image restoration using space-variant Gaussian scale mixtures in overcomplete pyramids[J].IEEE Transactions on Image Processing, 2008, 17(1): 27-41.doi:10.1109/TIP.2007.911473
    [25] XUE F, LUISIER F, BLU T. Multi-wiener SURE-LET deconvolution[J].IEEE Transactions on Image Processing, 2013, 22(5): 1954-1968.doi:10.1109/TIP.2013.2240004
    [26] KATKOVNIK V, EGIAZARIAN K O, ASTOLA J. A spatially adaptive nonparametric regression image deblurring[J].IEEE Transactions on Image Processing, 2005, 14(10): 1469-1478.doi:10.1109/TIP.2005.851705
    [27] FOI A, DABOV K, KATKOVNIK V,et al. Shape-adaptive DCT for denoising and image reconstruction[J].Proceedings of SPIE, 2006, 6064: 203-214.
    [28] BUADES A, COLL B, MOREL J. Nonlocal image and movie denoising[J].International Journal of Computer Vision, 2008, 76(2): 123-139.doi:10.1007/s11263-007-0052-1
    [29] CHEN F, HUANG X J, CHEN W F. Texture-preserving image deblurring[J].IEEE Signal Processing Letters, 2010, 17(12): 1018-1021.doi:10.1109/LSP.2010.2078807
    [30] DABOV K, FOI A, KATKOVNIK V,et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J].IEEE Transactions On Image Processing, 2007, 16(8): 2080-2095.
    [31] DABOVE K, FOI A, KATKOVNIK V,et al. Image restoration by sparse 3D transform-domain collaborative filtering[J].Proceedings of SPIE, 2008, 6812: 681207.doi:10.1117/12.766355
    [32] BANHAM M R, KATSAGGELOS A K. Spatially adaptive wavelet-based multiscale image restoration[J].IEEE Transactions on Image Processing, 1996, 5(4): 619-634.doi:10.1109/83.491338
    [33] YANG H, ZHANG ZH B, GUAN Y J. An adaptive parameter estimation for guided filter based image deconvolution[J].Signal Processing, 2017, 138: 16-26.doi:10.1016/j.sigpro.2017.03.006
    [34] WANG Y L, YANG J F, YIN W T,et al. A new alternating minimization algorithm for total variation image reconstruction[J].SIAM Journal on Imaging Sciences, 2008, 1(3): 248-272.doi:10.1137/080724265
    [35] CHO S, WANG J, LEE S. Handling outliers in non-blind image deconvolution[C].Proceedings of 2011 International Conference on Computer Vision,IEEE, 2011: 495-502.
    [36] CHANTAS G, GALATSANOS N P, MOLINA R,et al. Variational Bayesian image restoration with a product of spatially weighted total variation image priors[J].IEEE Transactions on Image Processing, 2010, 19(2): 351-362.doi:10.1109/TIP.2009.2033398
    [37] WEN Y W, NG M K, CHING W K. Iterative algorithms based on decoupling of deblurring and denoising for image restoration[J].SIAM Journal on Scientific Computing, 2008, 30(5): 2655-2674.doi:10.1137/070683374
    [38] TAKEDA H, FARSIU S, MILANFAR P. Deblurring using regularized locally adaptive kernel regression[J].IEEE Transactions on Image Processing, 2008, 17(4): 550-563.doi:10.1109/TIP.2007.918028
    [39] LUCY L B. An iterative technique for the rectification of observed distributions[J].Astronomical Journal, 1974, 79: 745.doi:10.1086/111605
    [40] WHYTE O, SIVIC J, ZISSERMAN A. Deblurring shaken and partially saturated images[C].Proceedings of 2011 IEEE International Conference on Computer Vision Workshops,IEEE, 2011: 745-752.
    [41] RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J].Physica D:Nonlinear Phenomena, 1992, 60(1-4): 259-268.doi:10.1016/0167-2789(92)90242-F
    [42] BECK A, TEBOULLE M. Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems[J].IEEE Transactions on Image Processing, 2009, 18(11): 2419-2434.doi:10.1109/TIP.2009.2028250
    [43] CHAN T F, GOLUB G H, MULET P. A nonlinear primal-dual method for total variation-based image restoration[J].SIAM Journal on Scientific Computing, 1999, 20(6): 1964-1977.doi:10.1137/S1064827596299767
    [44] CHEN D Q, ZHANG H, CHENG L ZH. A fast fixed point algorithm for total variation deblurring and segmentation[J].Journal of Mathematical Imaging and Vision, 2012, 43(3): 167-179.doi:10.1007/s10851-011-0298-7
    [45] SHI F, CHENG J, WANG L,et al. LRTV: MR image super-resolution with low-rank and total variation regularizations[J].IEEE Transactions on Medical Imaging, 2015, 34(12): 2459-2466.doi:10.1109/TMI.2015.2437894
    [46] RUDIN L I, OSHER S. Total variation based image restoration with free local constraints[C].Proceedings of 1st International Conference on Image Processing,IEEE, 1994: 31-35.
    [47] 童蓓蕾. 基于变分法的图像复原算法研究[D]. 合肥: 中国科学技术大学, 2018.

    TONG B L. Research of image restoration algorithm based on variational method[D]. Hefei: University of Science and Technology of China, 2018. (in Chinese)
    [48] OSHER S, BURGER M, GOLDFARB D,et al. An iterative regularization method for total variation-based image restoration[J].SIAM Journal on Multiscale Model&Simulation, 2005, 4(2): 460-489.
    [49] GOLDSTEIN T, OSHER S. The split Bregman method for L1-regularized problems[J].SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343.doi:10.1137/080725891
    [50] BIOUCAS-DIAS J M, FIGUEIREDO M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J].IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004.doi:10.1109/TIP.2007.909319
    [51] MICHAILOVICH O V. An iterative shrinkage approach to total-variation image restoration[J].IEEE Transactions on Image Processing, 2011, 20(5): 1281-1299.doi:10.1109/TIP.2010.2090532
    [52] VONESCH C, UNSER M. A fast thresholded landweber algorithm for wavelet-regularized multidimensional deconvolution[J].IEEE Transactions on Image Processing, 2008, 17(4): 539-549.doi:10.1109/TIP.2008.917103
    [53] NG M K, WEISS P, YUAN X M. Solving constrained total-variation image restoration and reconstruction problems via alternating direction methods[J].SIAM Journal on Scientific Computing, 2010, 32(5): 2710-2736.doi:10.1137/090774823
    [54] OLIVEIRA J P, BIOUCAS-DIAS J M, FIGUEIREDO M A T. Adaptive total variation image deblurring: a majorization-minimization approach[J].Signal Processing, 2009, 89(9): 1683-1693.doi:10.1016/j.sigpro.2009.03.018
    [55] KRISHNAN D, FERGUS R. Fast image deconvolution using hyper-Laplacian priors[C].Proceedings of the 22nd International Conference on Neural Information Processing Systems,Curran Associates Inc. , 2009: 1033-1041.
    [56] DONOHO D L. Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.doi:10.1109/TIT.2006.871582
    [57] PAN J SH, HU ZH, SU ZH X,et al.L0-regularized intensity and gradient prior for deblurring text images and beyond[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(2): 342-355.doi:10.1109/TPAMI.2016.2551244
    [58] VONESCH C, UNSER M. A fast iterative thresholding algorithm for wavelet-regularized deconvolution[J].Proceedings of SPIE, 2007, 6701: 67010D.
    [59] FIGUEIREDO M A T, NOWAK R D. An EM algorithm for wavelet-based image restoration[J].IEEE Transactions on Image Processing, 2003, 12(8): 906-916.doi:10.1109/TIP.2003.814255
    [60] DONG B, ZHANG Y. An efficient algorithm for ℓ0minimization in wavelet frame based image restoration[J].Journal of Scientific Computing, 2013, 54(2): 350-368.
    [61] CAI J F, DONG B, SHEN Z W. Image restoration: a wavelet frame based model for piecewise smooth functions and beyond[J].Applied and Computational Harmonic Analysis, 2016, 41(1): 94-138.doi:10.1016/j.acha.2015.06.009
    [62] PORTILLA J. Image restoration through l0 analysis-based sparse optimization in tight frames[C].Proceedings of the 16th IEEE International Conference on Image Processing,IEEE, 2009: 3909-3912.
    [63] CAI J F, OSHER S, SHEN Z W. Split Bregman methods and frame based image restoration[J].Multiscale Modeling&Simulation, 2010, 8(2): 337-369.
    [64] STARCK J L, NGUYEN M K, MURTAGH F. Wavelets and curvelets for image deconvolution: a combined approach[J].Signal Processing, 2003, 83(10): 2279-2283.doi:10.1016/S0165-1684(03)00150-6
    [65] LV X G, SONG Y ZH, LI F. An efficient nonconvex regularization for wavelet frame and total variation based image restoration[J].Journal of Computational and Applied Mathematics, 2015, 290: 553-566.doi:10.1016/j.cam.2015.06.006
    [66] ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries[J].IEEE Transactions on Image Processing, 2006, 15(12): 3736-3745.doi:10.1109/TIP.2006.881969
    [67] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.doi:10.1109/TSP.2006.881199
    [68] YANG H, ZHU M, WU X T,et al. Dictionary learning approach for image deconvolution with variance estimation[J].Applied Optics, 2014, 53(25): 5677-5684.doi:10.1364/AO.53.005677
    [69] DONG W SH, ZHANG L, SHI G M. Centralized sparse representation for image restoration[C].Proceedings of 2011 International Conference on Computer Vision,IEEE, 2011: 1259-1266.
    [70] DONG W SH, ZHANG L, SHI G M,et al. Nonlocally centralized sparse representation for image restoration[J].IEEETransactions on Image Processing, 2013, 22(4): 1620-1630.doi:10.1109/TIP.2012.2235847
    [71] ZHANG J, ZHAO D B, GAO W. Group-based sparse representation for image restoration[J].IEEE Transactions on Image Processing, 2014, 23(8): 3336-3351.doi:10.1109/TIP.2014.2323127
    [72] KHERADMAND A, MILANFAR P. A general framework for regularized, similarity-based image restoration[J].IEEE Transactions on Image Processing, 2014, 23(12): 5136-5151.doi:10.1109/TIP.2014.2362059
    [73] DANIELYAN A, KATKOVNIK V, EGIAZARIAN K O. BM3D frames and variational image deblurring[J].IEEE Transactions on Image Processing, 2012, 21(4): 1715-1728.doi:10.1109/TIP.2011.2176954
    [74] DONG W SH, SHI G M, LI X. Nonlocal image restoration with bilateral variance estimation: a low-rank approach[J].IEEE Transactions on Image Processing, 2013, 22(2): 700-711.doi:10.1109/TIP.2012.2221729
    [75] GU SH H, ZHANG L, ZUO W M,et al. . Weighted nuclear norm minimization with application to image denoising[C].Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition,IEEE, 2014: 2862-2869.
    [76] YANG H, HU G SH, WANG Y Q,et al. Low-rank approach for image nonblind deconvolution with variance estimation[J].Journal of Electronic Imaging, 2015, 24(6): 063013.doi:10.1117/1.JEI.24.6.063013
    [77] TOMASI C, MANDUCHI R. Bilateral filtering for gray and color images[C].Proceedings of the 6th International Conference on Computer Vision,IEEE, 1998: 839-846.
    [78] HE K M, SUN J, TANG X O. Guided image filtering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.doi:10.1109/TPAMI.2012.213
    [79] YANG H, ZHANG ZH B, ZHU M,et al. Edge-preserving image deconvolution with nonlocal domain transform[J].Optics&Laser Technology, 2013, 54: 128-136.
    [80] SUN L B, CHO S, WANG J,et al. . Good image priors for non-blind deconvolution[C].Proceedings of the 13th European Conference on Computer Vision,Springer, 2014: 231-246.
    [81] SCHMIDT U, ROTHER C, NOWOZIN S,et al. . Discriminative non-blind deblurring[C].Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition,IEEE, 2013: 604-611.
    [82] ZORAN D, WEISS Y. From learning models of natural image patches to whole image restoration[C].Proceedings of 2011 International Conference on Computer Vision,IEEE, 2011: 479-486.
    [83] ROTH S, BLACK M J. Fields of experts: a framework for learning image priors[C].Proceedings of 2005 IEEE Computer Society IEEE Conference on Computer Vision and Pattern Recognition,IEEE, 2005: 860-867.
    [84] SCHMIDT U, ROTH S. Shrinkage fields for effective image restoration[C].Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition,IEEE, 2014: 2774-2781.
    [85] CHEN Y J, YU W, POCK T. On learning optimized reaction diffusion processes for effective image restoration[C].Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition,IEEE, 2015: 5261-5269.
    [86] REN W Q, ZHANG J W, MA L,et al. . Deep non-blind deconvolution via generalized low-rank approximation[C].Proceedings of the 32nd International Conference on Neural Information Processing Systems,Curran Associates Inc. , 2018: 295-305.
    [87] KRUSE J, ROTHER C, SCHMIDT U. Learning to push the limits of efficient FFT-based image deconvolution[C].Proceedings of 2017 IEEE International Conference on Computer Vision,IEEE, 2017: 4596-4604.
    [88] SON H, LEE S. Fast non-blind deconvolution via regularized residual networks with long/short skip-connections[C].Proceedings of 2017 IEEE International Conference on Computational Photography,IEEE, 2017: 1-10.
    [89] SCHULER C J, BURGER H C, HARMELING S,et al. . A machine learning approach for non-blind image deconvolution[C].Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition,IEEE, 2013: 1067-1074.
    [90] XU L, REN J S J, LIU C,et al. . Deep convolutional neural network for image deconvolution[C].Proceedings of the 27th International Conference on Neural Information Processing Systems,MIT Press, 2014: 1790-1798.
    [91] EBOLI T, SUN J, PONCE J. End-to-end interpretable learning of non-blind image deblurring[C].Proceedings of the 16th European Conference on Computer Vision,Springer, 2020: 314-331.
    [92] GONG D, ZHANG ZH, SHI Q F,et al. Learning deep gradient descent optimization for image deconvolution[J].IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(12): 5468-5482.doi:10.1109/TNNLS.2020.2968289
    [93] ZHANG K, ZUO W M, GU SH H,et al. . Learning deep CNN denoiser prior for image restoration[C].Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition,IEEE, 2017: 2808-2817.
    [94] ZHANG J W, PAN J SH, LAI W SH,et al. . Learning fully convolutional networks for iterative non-blind deconvolution[C].Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition,IEEE, 2017: 6969-6977.
    [95] DONG W SH, WANG P Y, YIN W T,et al. Denoising prior driven deep neural network for image restoration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(10): 2305-2318.doi:10.1109/TPAMI.2018.2873610
    [96] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C].Proceedings of 18th International Conference on Medical Image Computing and Computer-Assisted Intervention,Springer, 2015: 234-241.
    [97] QUAN Y H, LIN P K, XU Y,et al. . Nonblind image deblurring via deep learning in complex field[J/OL].IEEE Transactions on Neural Networks and Learning Systems, 2021: 1-14 (2021-04-14). https://ieeexplore.ieee.org/document/9404870/.
    [98] CHEN L, ZHANG J W, PAN J SH,et al. . Learning a non-blind deblurring network for night blurry images[C].Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,IEEE, 2021: 10537-10545.
    [99] NAN Y S, QUAN Y H, JI H. Variational-EM-based deep learning for noise-blind image deblurring[C].Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,IEEE, 2020: 3623-3632.
    [100] JIN M G, ROTH S, FAVARO P. Noise-blind image deblurring[C].Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition,IEEE, 2017: 3834-3842.
    [101] DONG J X, ROTH S, SCHIELE B. DWDN: deep wiener deconvolution network for non-blind image deblurring[J/OL].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021 (2021-12-28). https://ieeexplore.ieee.org/document/9664009/.
    [102] LEMPITSKY V, VEDALDI A, ULYANOV D. Deep image prior[C].Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,IEEE, 2018: 9446-9454.
    [103] WANG ZH X, WANG Z P, LI Q Q,et al. . Image deconvolution with deep image and kernel priors[C].Proceedings of 2019 IEEE/CVF International Conference on Computer Vision Workshop,IEEE, 2019: 980-989.
    [104] ZUKERMAN J, TIRER T, GIRYES R. BP-DIP: a backprojection based deep image prior[C].Proceedings of the 28th European Signal Processing Conference,IEEE, 2021: 675-679.
    [105] BIGDELI S A, JIN M G, FAVARO P,et al. . Deep mean-shift priors for image restoration[C].Proceedings of the 31st International Conference on Neural Information Processing Systems,Curran Associates Inc. , 2017: 763-772.
    [106] LEVIN A, WEISS Y, DURAND F. Understanding and evaluating blind deconvolution algorithms[C].Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition,IEEE, 2009: 1964-1971.
    [107] SUN L B, CHO S, WANG J,et al. . Edge-based blur kernel estimation using patch priors[C].Proceedings of IEEE International Conference on Computational Photography,IEEE, 2013: 1-8.
    [108] MARTIN D, FOWLKES C, TAL D,et al. . A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C].Proceedings of the Eighth IEEE International Conference on Computer Vision,IEEE, 2001: 416-423.
    [109] DONG J X, PAN J SH, SUN D Q,et al. . Learning data terms for non-blind deblurring[C].Proceedings of the 15th European Conference on Computer Vision,Springer, 2018: 777–792.
    [110] DONG J X, ROTH S, SCHIELE B. Learning spatially-variant MAP models for non-blind image deblurring[C].Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition,IEEE, 2021: 4884-4893.
    [111] REN D W, ZUO W M, ZHANG D,et al. Simultaneous fidelity and regularization learning for image restoration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 284-299.doi:10.1109/TPAMI.2019.2926357
    [112] WANG ZH, BOVIK A C, SHEIKH H R,et al. Image quality assessment: from error visibility to structural similarity[J].IEEE Transactions on Image Processing, 2004, 13(4): 600-612.doi:10.1109/TIP.2003.819861
    [113] REN D W, ZUO W M, ZHANG D,et al. Partial deconvolution with inaccurate blur kernel[J].IEEE Transactions on Image Processing, 2018, 27(1): 511-524.doi:10.1109/TIP.2017.2764261
    [114] JI H, WANG K. Robust image deblurring with an inaccurate blur kernel[J].IEEE Transactions on Image Processing, 2012, 21(4): 1624-1634.doi:10.1109/TIP.2011.2171699
    [115] VASU S, MALIGIREDDY V R, RAJAGOPALAN A N. Non-blind deblurring: handling kernel uncertainty with CNNs[C].Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,IEEE, 2018: 3272-3281.
    [116] NAN Y S, JI H. Deep learning for handling kernel/model uncertainty in image deconvolution[C].Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,IEEE, 2020: 2385-2394.
    [117] WHYTE O, SIVIC J, ZISSERMAN A,et al. Non-uniform deblurring for shaken images[J].International Journal of Computer Vision, 2012, 98(2): 168-186.doi:10.1007/s11263-011-0502-7
    [118] TAI Y W, TAN P, BROWN M S. Richardson-Lucy deblurring for scenes under a projective motion path[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1603-1618.doi:10.1109/TPAMI.2010.222
    [119] HIRSCH M, SCHULER C J, HARMELING S,et al. . Fast removal of non-uniform camera shake[C].Proceedings of 2011 International Conference on Computer Vision,IEEE, 2011: 463-470.
    [120] SUN J, CAO W F, XU Z B,et al. . Learning a convolutional neural network for non-uniform motion blur removal[C].Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition,IEEE, 2015: 769-777.
    [121] KUPYN O, BUDZAN V, MYKHAILYCH M,et al. . DeblurGAN: blind motion deblurring using conditional adversarial networks[C].Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,IEEE, 2018: 8183-8192.
    [122] PAN J SH, SUN D Q, PFISTER H,et al. . Blind image deblurring using dark channel prior[C].Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition,IEEE, 2016: 1628-1636.
    [123] CHEN L, FANG F M, WANG T T,et al. . Blind image deblurring with local maximum gradient prior[C].Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,IEEE, 2019: 1742-1750.
  • 加载中
图(8)/ 表(5)
计量
  • 文章访问数:1074
  • HTML全文浏览量:597
  • PDF下载量:364
  • 被引次数:0
出版历程
  • 收稿日期:2022-05-16
  • 修回日期:2022-06-20
  • 网络出版日期:2022-07-26

目录

    /

      返回文章
      返回
        Baidu
        map