留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
downloadPDF
潘其坤, 苗昉晨, 司红利, 沈辉, 高飞, 于德洋, 张阔, 张冉冉, 赵崇霄, 陈飞, 郭劲. 紧凑型波长自动调谐脉冲CO2 器[J]. , 2022, 15(5): 1007-1012. doi: 10.37188/CO.2022-0107
引用本文: 潘其坤, 苗昉晨, 司红利, 沈辉, 高飞, 于德洋, 张阔, 张冉冉, 赵崇霄, 陈飞, 郭劲. 紧凑型波长自动调谐脉冲CO2 器[J]. , 2022, 15(5): 1007-1012.doi:10.37188/CO.2022-0107
PAN Qi-kun, MIAO Fang-chen, SI Hong-Li, SHEN Hui, GAO Fei, YU De-Yang, ZHANG Kuo, ZHANG Ran-ran, ZHAO Chong-Xiao, CHEN Fei, GUO Jin. Compact pulsed CO2 laser with wavelength automatic tuning[J]. Chinese Optics, 2022, 15(5): 1007-1012. doi: 10.37188/CO.2022-0107
Citation: PAN Qi-kun, MIAO Fang-chen, SI Hong-Li, SHEN Hui, GAO Fei, YU De-Yang, ZHANG Kuo, ZHANG Ran-ran, ZHAO Chong-Xiao, CHEN Fei, GUO Jin. Compact pulsed CO2laser with wavelength automatic tuning[J].Chinese Optics, 2022, 15(5): 1007-1012.doi:10.37188/CO.2022-0107

紧凑型波长自动调谐脉冲CO2

doi:10.37188/CO.2022-0107
基金项目:国家重点研发计划(No. 2018YFE0203200);吉林省与中科院科技合作项目(No. 2021SYHZ0028); 与物质相互作用国家重点实验室基金项目(No. SKLLIM1914, SKLLIM2114);中国科学院青年创新促进会(No. 2021216)
详细信息
    作者简介:

    潘其坤(1985—),男,河南开封人,博士,副研究员,中国科学院青年创新促进会会员,2014 年于中国科学院大学获得博士学位,主要从事中长波 器及 等离子体极紫外光源方面的研究。E-mail:panqikun2005@163.com

  • 中图分类号:TN248.5

Compact pulsed CO2laser with wavelength automatic tuning

Funds:Supported by National Key R&D Program of China (No. 2018YFE0203200); Science and Technology Cooperation Project between Jilin Province and Chinese Academy of Sciences (No. 2021SYHZ0028); State Key Laboratory of Laser Interaction with Matter Project (No. SKLLIM1914, SKLLIM2114); Youth Innovation Promotion Association, CAS (No. 2021216)
More Information
  • 摘要:

    面向机载 差分吸收雷达对小型轻量化 光源的应用需求,研制了紧凑型自动调谐脉冲CO2 器。首先,研究了射频波导腔内光束和自由空间光学斩波光束孔径匹配关系,设计了具有实焦点的腔内光束变换系统,实验验证了斩波器通光孔径对 脉冲波形的影响。其次,研究了CO2 器的波长调谐特性,分析了相邻 谱线光栅衍射角度差,并基于高精度电动转台和金属闪耀光栅,实现了CO2 器波长自动调谐输出。最后,基于小型轻量化模块设计,完成了紧凑型自动调谐脉冲CO2 器集成。实验结果表明,该 器在1 kHz条件下运转稳定,脉冲宽度为350 ns,峰值功率为3.7 kW,在9.2~10.7 μm范围内测试到30条 谱线,重量为18 kg,本文研究为机载 差分吸收雷达提供了一种小型化探测光源。

  • 图 1可调谐脉冲CO2 器原理示意图

    Figure 1.Schematic diagram of a tunable pulsed CO2laser

    图 2脉冲CO2 平均功率随射频激励占空比变化关系

    Figure 2.Relationship between the average power of a pulsed CO2laser and the RF excitation duty cycle

    图 3采用不同通光孔径斩波扇机械调Q获得的CO2 脉冲波形:(a)0.4 mm,(b)0.8 mm,(c) 1.2 mm。(d)0.8 mm孔径1 kHz脉冲串波形

    Figure 3.CO2pulse waveforms obtained by mechanicalQ-switching of chopper fans with different optical apertures. (a) 0.4 mm, (b) 0.8 mm, (c) 1.2 mm. (d) Pulse train at 1 kHz with slits width of 0.8 mm

    图 4小型、轻量化高精度电动转台

    Figure 4.Small lightweight high precision electric turntable

    图 5机械调Q脉冲CO2 器输出谱线

    Figure 5.Output spectrum of mechanicalQ-switched pulsed CO2lasers

    图 6紧凑型波长自动调谐脉冲CO2 器实物图

    Figure 6.Photo of compact pulsed CO2laser with wavelength automatic tuning

  • [1] CAO ZH, WEI CH Y, CHENG X,et al. Ground fused silica processed by combined chemical etching and CO2laser polishing with super-smooth surface and high damage resistance[J].Optics Letters, 2020, 45(21): 6014-6017.doi:10.1364/OL.409857
    [2] 高月娟, 陈飞, 潘其坤, 等. 用于超短脉冲CO2 的半导体光开关理论建模与数值分析[J]. 中国光学,2020,13(3):577-585.

    GAO Y J, CHEN F, PAN Q K,et al. Modeling and numerical simulation of a semiconductor switching device applied in an ultra-short pulse CO2laser[J].Chinese Optics, 2020, 13(3): 577-585. (in Chinese)
    [3] 袁志国, 马修真, 刘晓楠, 等. 利用可调谐 吸收光谱技术的柴油机排放温度测试研究[J]. 中国光学,2020,13(2):281-289.doi:10.3788/co.20201302.0281

    YUAN ZH G, MA X ZH, LIU X N,et al. Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J].Chinese Optics, 2020, 13(2): 281-289. (in Chinese)doi:10.3788/co.20201302.0281
    [4] FAN S Y, HEALY N. CO2laser-based side-polishing of silica optical fibers[J].Optics Letters, 2020, 45(15): 4128-4131.doi:10.1364/OL.397939
    [5] HE T, WEI CH Y, JIANG ZH G,et al. Numerical model and experimental demonstration of high precision ablation of pulse CO2laser[J].Chinese Optics Letters, 2018, 16(4): 041401.doi:10.3788/COL201816.041401
    [6] POLYANSKIY M N, POGORELSKY I V, BABZIEN M,et al. Demonstration of a 2 ps, 5 TW peak power, long-wave infrared laser based on chirped-pulse amplification with mixed-isotope CO2amplifiers[J].OSA Continuum, 2020, 3(3): 459-472.doi:10.1364/OSAC.381467
    [7] 曾庆栋, 袁梦甜, 朱志恒, 等. 便携式 诱导击穿光谱最新研究进展[J]. 中国光学,2021,14(3):470-486.doi:10.37188/CO.2020-0093

    ZENG Q D, YUAN M T, ZHU ZH H,et al. Research progress on portable laser-induced breakdown spectroscopy[J].Chinese Optics, 2021, 14(3): 470-486. (in Chinese)doi:10.37188/CO.2020-0093
    [8] RUAN P, PAN Q K, XIE J J,et al. Rapidly tunable pulsed CO2laser based on acoustic-optic modulator[J].Infrared Physics&Technology, 2018, 92: 299-303.
    [9] TEHRANI M K, MOHAMMAD M M, JAAFARI E,et al. Setting up a mobile Lidar (DIAL) system for detecting chemical warfare agents[J].Laser Physics, 2015, 25(3): 035701.doi:10.1088/1054-660X/25/3/035701
    [10] PAL A, CLARK C D, SIGMAN M,et al. Differential absorption lidar CO2laser system for remote sensing of TATP related gases[J].Applied Optics, 2009, 48(4): B145-B150.doi:10.1364/AO.48.00B145
    [11] KARAPUZIKOV A I, PTASHNIK I V, SHERSTOV I V,et al. Modeling of helicopter-borne tunable TEA CO2DIAL system employment for detection of methane and ammonia leakages[J].Infrared Physics&Technology, 2000, 41(2): 87-96.
    [12] SZINICZ L. History of chemical and biological warfare agents[J].Toxicology, 2005, 214(3): 167-181.doi:10.1016/j.tox.2005.06.011
    [13] BANDINI F, SUNDING T P, LINDE J,et al. Unmanned Aerial System (UAS) observations of water surface elevation in a small stream: comparison of radar altimetry, LIDAR and photogrammetry techniques[J].Remote Sensing of Environment, 2020, 237: 111487.doi:10.1016/j.rse.2019.111487
    [14] PODOSKI J H, SMITH T D, FINNEGAN D C,et al. Unmanned aerial system lidar survey of two breakwaters in the Hawaiian islands[J].Coastal Engineering Proceedings, 2018, 1(36): 23.doi:10.9753/icce.v36.structures.23
    [15] XIE J J, PAN Q K, GUO R H,et al. Dynamical analysis of acousto-optically Q-switched CO2laser[J].Optics and Lasers in Engineering, 2012, 50(2): 159-164.doi:10.1016/j.optlaseng.2011.09.014
    [16] ZHANG Y CH, TIAN ZH SH, SUN ZH H,et al. Study of frequency stabilization for electro-opticalQ-switched radio-frequency-excited waveguide CO2laser using build-up time method[J].Applied Optics, 2013, 52(16): 3732-3736.doi:10.1364/AO.52.003732
    [17] 潘其坤, 陈飞, 石宁宁, 等. 声光调Q CO2 器波长调谐理论分析与实验研究[J]. 红外与 工程,2017,46(7):0705002.doi:10.3788/IRLA201746.0705002

    PAN Q K, CHEN F, SHI N N,et al. Theoretical analysis and experimental research on tunable acousto-optic Q-switched CO2laser[J].Infrared and Laser Engineering, 2017, 46(7): 0705002. (in Chinese)doi:10.3788/IRLA201746.0705002
  • 加载中
图(6)
计量
  • 文章访问数:582
  • HTML全文浏览量:224
  • PDF下载量:200
  • 被引次数:0
出版历程
  • 收稿日期:2022-05-28
  • 修回日期:2022-06-27
  • 网络出版日期:2022-07-12

目录

    /

      返回文章
      返回
        Baidu
        map