留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氨气泄漏混洗自注意力轻量化红外检测

张印辉 庄宏 何自芬 杨宏宽 黄滢

张印辉, 庄宏, 何自芬, 杨宏宽, 黄滢. 氨气泄漏混洗自注意力轻量化红外检测[J]. , 2023, 16(3): 607-619. doi: 10.37188/CO.2022-0127
引用本文: 张印辉, 庄宏, 何自芬, 杨宏宽, 黄滢. 氨气泄漏混洗自注意力轻量化红外检测[J]. , 2023, 16(3): 607-619. doi: 10.37188/CO.2022-0127
ZHANG Yin-hui, ZHUANG Hong, HE Zi-fen, YANG Hong-kuan, HUANG Ying. Lightweight infrared detection of ammonia leakage using shuffle and self-attention[J]. Chinese Optics, 2023, 16(3): 607-619. doi: 10.37188/CO.2022-0127
Citation: ZHANG Yin-hui, ZHUANG Hong, HE Zi-fen, YANG Hong-kuan, HUANG Ying. Lightweight infrared detection of ammonia leakage using shuffle and self-attention[J]. Chinese Optics, 2023, 16(3): 607-619. doi: 10.37188/CO.2022-0127

氨气泄漏混洗自注意力轻量化红外检测

doi: 10.37188/CO.2022-0127
基金项目: 国家自然科学基金(No. 62061022,No. 62171206,No. 61761024)
详细信息
    作者简介:

    张印辉(1977—),男,河北故城人,博士,教授,博士生导师,2010年于昆明理工大学获得博士学位,现为昆明理工大学机电工程学院教授,主要研究方向为图像处理、机器视觉。E-mail:zhangyinhui@kust.edu.cn

    何自芬(1976—),女,山西阳泉人,博士,副教授,2013年于昆明理工大学获得博士学位。现为昆明理工大学机电工程学院副教授,主要研究方向为图像处理、计算机视觉。E-mail:zyhhzf1998@163.com

  • 中图分类号: TP391

Lightweight infrared detection of ammonia leakage using shuffle and self-attention

Funds: Supported by National Natural Science Foundation of China (No. 62061022, No. 62171206, No. 61761024)
More Information
  • 摘要:

    氨气是重要的基础工业原材料,实现其非接触探测对于及时发现氨气泄漏,避免重大安全事故发生具有重要意义。针对常规氨气泄漏检测装置需等到氨气扩散到一定范围并与传感器接触时才能响应的不足,提出一种混洗自注意力网络(SSANet)模型实现氨气泄漏红外非接触检测。因红外热像仪获取的氨气泄漏图像含噪高、对比度低,故通过非局部均值去噪、限制对比度的自适应直方图均衡化预处理建立氨气泄漏红外检测数据集。SSANet模型在YOLOv5s基础上通过K-means算法聚类分析出适用于氨气泄漏红外检测的候选框以预置模型参数;采用轻量级ShuffleNetv2网络,将其Shuffle Block中的3×3的深度可分离卷积核替换为5×5,采用含有新卷积模块的SK5 Block对特征提取网络进行重构,使模型大小、计算量和参数量实现轻量化的同时提高检测精度;采用Transformer模块代替原网络瓶颈模块中的C3模块实现泄漏区域多头注意力自底向上融合,实现检测精度的再次提升。实验结果表明,SSANet模型较YOLOv5s基础模型大小和参数量分别减少76.40%、78.30%,降为3.40 M、1.53 M;单张图像平均检测速度提升1.10%,达到3.20 ms;平均检测精度提升3.50%,达到96.30%。本文为开发氨气泄漏非接触探测装置以保障涉氨企业的安全生产和稳定运行提供了一种有效的检测算法。

     

  • 图 1  SSANet 模型总体架构

    Figure 1.  The overall architecture of the SSANet model

    图 2  红外氨气泄漏真实框变化图

    Figure 2.  Change diagram of a real frame of infrared ammonia leakage

    图 3  氨气泄漏红外检测数据集候选框高宽比可视化结果

    Figure 3.  Visualization results of the height/width ratio of the anchor in ammonia leak infrared detection data

    图 4  通道混洗实现方式

    Figure 4.  Implementation of channel shuffling

    图 5  SK5 Block模块结构

    Figure 5.  SK5 Block module structure

    图 6  Transformer模块结构图

    Figure 6.  Structure diagram of Transformer block

    图 7  Transformer编码层结构图

    Figure 7.  Transformer encode structure diagram

    图 8  不同方法处理后的增强效果对比图

    Figure 8.  Comparison of enhancement effects by different methods

    图 9  SSANet模型最终检测结果

    Figure 9.  The final test results of the SSANet network model

    表  1  聚类前后3个检测层初始候选框尺寸情况

    Table  1.   Initial candidate frame sizes of the three detection layers before and after clustering

    检测层聚类前聚类后
    检测层1(10,13)、(16,30)、(33,23)(11,10)、(29,12)、(34,29)
    检测层2(30,61)、(62,45)、(59,119)(52,61)、(62,18)、(64,38)
    检测层3(116,90)、(156,198)、(373,326)(91,38)、(115,22)、(201,45)
    下载: 导出CSV

    表  2  超参数配置

    Table  2.   Hyperparameter configuration

    超参数名称超参数值
    批大小16
    初始学习率0.01
    迭代次数400
    动量0.937
    学习率衰减策略余弦退火策略
    权重衰减0.0005
    下载: 导出CSV

    表  3  图像预处理的定量评价指标

    Table  3.   Objective evaluation indicators of image preprocessing algorithms

    图像PSNR/dBAGIE
    原图像23.401.907.06
    预处理图像2.177.53
    下载: 导出CSV

    表  4  图像预处理前后网络性能对比

    Table  4.   Comparison of network performances before and after image preprocessing

    模型Params/MModel size/MSpeed/msmAP/%
    YOLOv5s7.0514.403.6092.80
    Prep-YOLOv5s7.0514.403.6093.80
    下载: 导出CSV

    表  5  聚类前后网络性能对比

    Table  5.   Comparison of network performance before and after clustering

    模型Params/MModel size/MSpeed/msmAP/%
    YOLOv5s7.0514.403.6092.80
    Kms-YOLOv5s7.0514.403.6093.70
    Kms-Prep-YOLOv5s7.0514.403.6094.30
    下载: 导出CSV

    表  6  不同特征提取网络评估指标对比

    Table  6.   Comparison of evaluation indicators for different backbone networks

    模型GFLOPsModel
    size/M
    Params
    /M
    Speed
    /ms
    mAP
    /%
    GhostNet-YOLOv5s10.6010.505.083.0093.90
    MobileNetv3-YOLOv5s6.307.403.542.8093.50
    ShuffleNetv2-YOLOv5s4.603.401.532.7093.80
    SK5-YOLOv5s4.803.401.572.7094.40
    下载: 导出CSV

    表  7  不同BottleNeck结构网络性能对比

    Table  7.   Comparison of network performance of different BottleNeck structures

    模型Model
    size/M
    Params
    /M
    Speed
    /ms
    mAP
    /%
    SK5-YOLOv5s3.401.572.7094.40
    SK5-YOLOv5s-CSPBottleNeck3.401.542.7093.70
    SK5-YOLOv5s-GhostBottleNeck3.301.502.6094.20
    SK5-YOLOv5s-CbamBottleNeck3.201.472.5092.90
    SSANet3.401.533.2096.30
    下载: 导出CSV

    表  8  不同模型精度对比

    Table  8.   Accuracy comparison of different models

    ModelGFLOPsParams/MModel size/MSpeed/msmAP/%
    YOLOv3154.761.50123.4011.7092.70
    YOLOv3-tiny12.908.7017.403.4037.40
    YOLOv5s16.307.0514.403.6092.80
    YOLOx26.648.9471.908.4389.78
    SSANet4.601.533.403.2096.30
    下载: 导出CSV
    Baidu
  • [1] 杜晓燕, 程五一, 闫瑞青, 等. 我国涉氨制冷企业氨泄漏事故规律性研究[J]. 消防科学与技术,2017,36(6):857-860. doi: 10.3969/j.issn.1009-0029.2017.06.045

    DU X Y, CHENG W Y, YAN R Q, et al. Study on regularity of ammonia leakage accident of ammonia refrigeration enterprises in China[J]. Fire Science and Technology, 2017, 36(6): 857-860. (in Chinese) doi: 10.3969/j.issn.1009-0029.2017.06.045
    [2] 胡继粗, 陈明鹏, 荣茜, 等. 氨气传感材料及器件的研究进展[J]. 功能材料,2019,50(4):4030-4037+4048. doi: 10.3969/j.issn.1001-9731.2019.04.006

    HU J C, CHEN M P, RONG Q, et al. Research progress of ammonia gas sensing materials and devices[J]. Journal of Functional Materials, 2019, 50(4): 4030-4037+4048. (in Chinese) doi: 10.3969/j.issn.1001-9731.2019.04.006
    [3] 克迪里亚·吾麦尔, 姑丽各娜·买买提依明, 买买提艾沙·苏莱曼, 等. 高灵敏复合光波导硫化氢气体传感器的研究[J]. 光学学报,2020,40(24):2428001.

    WUMAIER K, MAMTIMIN G, SULAIMAN M, et al. Highly-sensitive hydrogen-sulfide gas sensor based on composite optical waveguide[J]. Acta Optica Sinica, 2020, 40(24): 2428001. (in Chinese)
    [4] 丁一, 刁泉, 刘东, 等. 石墨烯量子点的合成及其在气体传感中的应用进展[J]. 分析化学,2022,50(4):495-505. doi: 10.19756/j.issn.0253-3820.210843

    DING Y, DIAO Q, LIU D, et al. Synthesis of graphene quantum dots and application in gas sensing[J]. Chinese Journal of Analytical Chemistry, 2022, 50(4): 495-505. (in Chinese) doi: 10.19756/j.issn.0253-3820.210843
    [5] 刘金正, 张立学. 原子层沉积技术在电分析化学中的应用研究进展[J]. 分析化学,2021,49(11):1767-1778. doi: 10.19756/j.issn.0253-3820.210481

    LIU J ZH, ZHANG L X. Progress in application of atomic layer deposition technique in electroanalytical chemistry[J]. Chinese Journal of Analytical Chemistry, 2021, 49(11): 1767-1778. (in Chinese) doi: 10.19756/j.issn.0253-3820.210481
    [6] 唐连波, 付大友, 陈琦, 等. 碳量子点增强气液相化学发光检测二氧化碳[J]. 应用化学,2022,39(8):1294-1302. doi: 10.19894/j.issn.1000-0518.210465

    TANG L B, FU D Y, CHEN Q, et al. Enhanced gas-liquid chemiluminescence by carbon dots for determination of carbon dioxide[J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1294-1302. (in Chinese) doi: 10.19894/j.issn.1000-0518.210465
    [7] 赵鹏鹏, 李庶中, 李迅, 等. 融合视觉显著性和局部熵的红外弱小目标检测[J]. 中国光学,2022,15(2):267-275. doi: 10.37188/CO.2021-0170

    ZHAO P P, LI SH ZH, LI X, et al. Infrared dim small target detection based on visual saliency and local entropy[J]. Chinese Optics, 2022, 15(2): 267-275. (in Chinese) doi: 10.37188/CO.2021-0170
    [8] 张旭, 金伟其, 李力, 等. 天然气泄漏被动式红外成像检测技术及系统性能评价研究进展[J]. 红外与 工程,2019,48(S2):53-65.

    ZHANG X, JIN W Q, LI L, et al. Research progress on passive infrared imaging detection technology and system performance evaluation of natural gas leakage[J]. Infrared and Laser Engineering, 2019, 48(S2): 53-65. (in Chinese)
    [9] 王建平, 李俊山, 杨亚威, 等. 基于红外成像的乙烯气体泄漏检测[J]. 液晶与显示,2014,29(4):623-628. doi: 10.3788/YJYXS20142904.0623

    WANG J P, LI J SH, YANG Y W, et al. Ethylene leaking detection based on infrared imaging[J]. Chinese Journal of Liquid Crystal and Display, 2014, 29(4): 623-628. (in Chinese) doi: 10.3788/YJYXS20142904.0623
    [10] 隋中山, 李俊山, 张姣, 等. 基于张量低秩分解和稀疏表示的红外微小气体释放检测[J]. 光学精密工程,2016,24(11):2855-2862.

    SUI ZH SH, LI J SH, ZHANG J, et al. Micro gas leakage detection based on tensor low rank decomposition and sparse representation from infrared images[J]. Optics and Precision Engineering, 2016, 24(11): 2855-2862. (in Chinese)
    [11] 林云. 基于深度学习的有害气体红外图像处理研究[D]. 杭州: 浙江工商大学, 2018.

    LIN Y. Research on infrared image processing of toxic gases based on deep learning algorithm[D]. Hangzhou: Zhejiang Gongshang University, 2018. (in Chinese)
    [12] 翁静, 袁盼, 王铭赫, 等. 基于支持向量机的泄漏气体云团热成像检测方法[J]. 光学学报,2022,42(9):0911002. doi: 10.3788/AOS202242.0911002

    WENG J, YUAN P, WANG M H, et al. Thermal imaging detection method of leak gas clouds based on support vector machine[J]. Acta Optica Sinica, 2022, 42(9): 0911002. (in Chinese) doi: 10.3788/AOS202242.0911002
    [13] KASTEK M, PIATKOWSKI T, TRZASKAWKA P. Infrared imaging fourier transform spectrometer as the stand-off gas detection system[J]. Metrology &Measurement Systems, 2011, 18(4): 607-620.
    [14] BARBER R, RODRIGUEZ-CONEJO M A, MELENDEZ J, et al. Design of an infrared imaging system for robotic inspection of gas leaks in industrial environments[J]. International Journal of Advanced Robotic Systems, 2015, 12(3): 23.
    [15] SHI J H, CHANG Y J, XU CH H, et al. Real-time leak detection using an infrared camera and faster R-CNN technique[J]. Computers &Chemical Engineering, 2020, 135: 106780.
    [16] REDMON J, FARHADI A. YOLO9000: Better, Faster, Stronger[C]. IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2017: 7263-7271.
    [17] REDMON J, FARHADI A. YOLOv3: an incremental improvement[C]. Computer Vision and Pattern Recognition, Springer, 2018: 1804-2767.
    [18] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J/OL]. arXiv: 2004.10934, 2020(2020-04-23). https://arxiv.org/abs/2004.10934
    [19] JUBAYER F, SOEB J A, MOJUMDER A N, et al.. Detection of mold on the food surface using YOLOv5[J]. Current Research in Food Science, 2021, 4: 724-728.
    [20] LU Y H, ZHANG L W, XIE W. YOLO-compact: an efficient YOLO network for single category real-time object detection[C]//2020 Chinese Control And Decision Conference (CCDC). IEEE, 2020: 1931-1936.
    [21] KANUNGO T, MOUNT D M, NETANYAHU N S, et al. An efficient k-means clustering algorithm: analysis and implementation[J]. IEEE Transactions on Pattern Analysis &Machine Intelligence, 2002, 24(7): 881-892.
    [22] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al.. An image is worth 16 x16 words: transformers for image recognition at scale[C]. 9th International Conference on Learning Representations, ICLR, 2020.
    [23] MA N N, ZHANG X Y, ZHENG H T, et al.. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]. Proceedings of the 15th European Conference on Computer Vision, Springer, 2018, 122-138.
    [24] VOITA E, TALBOT D, MOISEEV F, et al. Analyzing multi-head self-attention: specialized heads do the heavy lifting, the rest can be pruned[J]. Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,Association for Computational Linguistics, 2019: 5797-5808.
    [25] XIONG R B, YANG Y C, HE D, et al.. On layer normalization in the transformer architecture[C]//Proceedings of the 37th International Conference on Machine Learning, PMLR, 2020: 10524-10533.
    [26] BUADES A, COLL B, MOREL J M. A non-local algorithm for image denoising[C]//2005 IEEE Computer Society Conference On Computer Vision and Pattern Recognition, IEEE, 2005, 2: 60-65.
    [27] REZA A M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement[J]. Journal of VLSI Signal Processing Systems for Signal,Image and Video Technology, 2004, 38(1): 35-44.
    [28] 江泽涛, 钱艺, 伍旭, 等. 一种基于ARD-GAN的低照度图像增强方法[J]. 电子学报,2021,49(11):2160-2165.

    JIANG Z T, QIAN Y, WU X, et al. Low-light image enhancement method based on ARD-GAN[J]. Acta Electronica Sinica, 2021, 49(11): 2160-2165. (in Chinese)
    [29] 刘柯, 李旭健. 水下和微光图像的去雾及增强方法[J]. 光学学报,2020,40(19):1910003. doi: 10.3788/AOS202040.1910003

    LIU K, LI X J. De-hazing and enhancement methods for underwater and low-light images[J]. Acta Optica Sinica, 2020, 40(19): 1910003. (in Chinese) doi: 10.3788/AOS202040.1910003
    [30] 江巨浪, 刘国明, 朱柱, 等. 基于快速模糊聚类的动态多直方图均衡化算法[J]. 电子学报,2022,50(1):167-176. doi: 10.12263/DZXB.20201040

    JIANG J L, LIU G M, ZHU ZH, et al. Dynamic multi-histogram equalization Based on fast fuzzy clustering[J]. Acta Electronica Sinica, 2022, 50(1): 167-176. (in Chinese) doi: 10.12263/DZXB.20201040
    [31] HAN K, WANG Y H, TIAN Q, et al.. GhostNet: more features from cheap operations[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 1577-1586.
    [32] HOWARD A, SANDLER M, CHEN B, et al.. Searching for MobileNetV3[C]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2020: 1314-1324
    [33] GE ZH, LIU S T, WANG F, et al.. Yolox: exceeding yolo series in 2021[J/OL]. arXiv: 2107.08430, 2021(2021-08-06). https://arxiv.org/abs/2107.08430
  • 加载中
图(9) / 表(8)
计量
  • 文章访问数:  266
  • HTML全文浏览量:  161
  • PDF下载量:  270
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-14
  • 修回日期:  2022-07-07
  • 网络出版日期:  2022-09-28
  • 刊出日期:  2023-04-11

目录

    /

    返回文章
    返回
    Baidu
    map