Design of solar concentrated uniform linear light source of composite ellipsoid cavity
-
摘要:
为了实现太阳光直接泵浦板条高功率 器,对均匀线形高功率密度泵浦源进行研究。本文提出由一级聚光系统与7个共焦点椭球叠加形成二级聚光系统(复合椭球腔),组合实现高功率密度均匀线光源的设计方法。每个椭球可对圆形第一焦斑进行等辐射通量分割,镜像成像特点使得峰值功率密度未明显下降,分解后镜像光斑在第二焦点处形成均匀线光源。通过坐标变化给出等辐射通量数学模型,利用退火算法求解出每个椭球旋转平移参量。由半径为30 mm,焦距为70 mm菲涅尔透镜和
a =3.4 mm,c =3.15 mm单椭球腔组成一级系统,附带二级复合椭球腔聚光系统,可实现有效长度为12 mm,峰值功率密度为1.09×106W/m2,均匀度为95.46%线光源。对比每个椭球参量对均匀度贡献,中间椭球旋转参量θ 为1.4°,均匀度改善明显,边缘椭球参量Δ 改变对线光源有效长度影响显著,其最佳值为0.53 mm。Abstract:In order to implement a solar direct pumping slab high power laser, a linear uniform high-power density pump source is studied. In this paper, we propose a design method of a high-power density uniform linear light source by combining the first-order concentrating system with seven confocal ellipsoids to form a composite ellipsoid cavity. The equal radiation flux segmentation of the circular first focal spot is realized by each ellipsoid. The mirror imaging characteristics do not significantly decrease the peak power density. After decomposition, the mirror spot forms a uniform linear light source at the second point of focus. The mathematical model of equal radiation flux is given by coordinate transform, and the rotation and translation parameters of each ellipsoid are solved by the annealing algorithm. The first-order system is composed of a Fresnel lens with a radius of 30 mm, a focal length of 70 mm and a single ellipsoidal cavity with
a of 3.4 mm,c of 3.15 mm, The second-order composite ellipsoidal cavity concentrating system is attached. The line source is realized with effective length of 12 mm, the peak power density of 1.09 × 106W/m2, and the uniformity of 95.46 %. Compared with the contribution of each ellipsoid parameter to the uniformity, the uniformity effect is significantly improved when the rotation parameterθ of the middle ellipsoid is 1.4°. The change of the edge ellipsoid parameterΔ has a significant influence on the effective length of the linear light source, and its optimal value is 0.53 mm. -
表 1复合椭球腔α、θ、Δ计算结果
Table 1.Results ofα,θ,Δof composite ellipsoid cavities
L3 L2 L1 M R1 R2 R3 θ/° 1.24 1.27 1.25 1.20 1.25 1.27 1.24 α/° −7.50 −5.42 −2.51 0 2.51 5.42 7.50 Δ/mm 0.621 0.300 0.075 0 0.075 0.300 0.621 表 2优化后复合椭球腔α、θ、Δ值
Table 2.Optimizedα,θ,Δof composite ellipsoid cavities
L3 L2 L1 M R1 R2 R3 θ/° 1.45 1.40 1.28 1.45 1.28 1.40 1.45 α/° −7.50 −5.40 −2.30 0 2.30 5.40 7.50 Δ/mm 0.53 0.30 0.08 0 0.08 0.30 0.53 -
[1] HAN X Y, SUN Y, HUANG J,et al. Design and analysis of a CPV/T solar receiver with volumetric absorption combined spectral splitter[J].International Journal of Energy Research, 2020, 44(6): 4837-4850.doi:10.1002/er.5277 [2] ZHOU ZH G, WANG Z, BERMEL P. Radiative cooling for low-band gap photovoltaics under concentrated sunlight[J].Optics Express, 2019, 27(8): A404-A418.doi:10.1364/OE.27.00A404 [3] KOST C, MAYER J N, THOMSON J,et al. .Levelized cost of electricity: PV and CPV in comparison to other technologies[C].Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition, European Commission, 2014: 4086. [4] NOZIK A J, CONIBEER G, BEARD M C. Advanced Concepts in Photovoltaics[M]. Cambridge: Royal Society of Chemistry Press, 2014. [5] LI M, XU C M, JI X,et al.. A new study on the end loss effect for parabolic trough solar collectors[J].Energy, 2015; 82: 382. [6] 孟宪龙, 刘备, 段辰星, 等. 一种新型槽式太阳能CPV/T聚光器的光学传输特性[J]. 光学学报,2021,41(15):1522002.doi:10.3788/AOS202141.1522002MENG X L, LIU B, DUAN CH X,et al. Optical transmission characteristic of novel trough type CPV/T concentrator[J].Acta Optica Sinica, 2021, 41(15): 1522002. (in Chinese)doi:10.3788/AOS202141.1522002 [7] 尹勇, 杨洪海, 苏亚欣, 等. 聚光型太阳能光伏光热系统研究进展[J]. 热能动力工程,2022,37(1):1-13.YIN Y, YANG H H, SU Y X,et al. Research progress of solar concentrating photovoltaic-thermal system[J].Journal of Engineering for Thermal Energy and Power, 2022, 37(1): 1-13. (in Chinese) [8] TIBÚRCIO B D, LIANG D W, ALMEIDA J,et al. Improving solar-pumped laser efficiency by a ring-array concentrator[J].Journal of Photonics for Energy, 2018, 8(1): 018002. [9] LIANG D W, VISTAS C R, TIBÚRCIO B D,et al. Solar-pumped Cr: Nd: YAG ceramic laser with 6.7% slope efficiency[J].Solar Energy Materials and Solar Cells, 2018, 185: 75-79.doi:10.1016/j.solmat.2018.05.020 [10] LIANG D W, VISTAS C R, ALMEIDA J,et al. Side-pumped continuous-wave Nd: YAG solar laser with 5.4% slope efficiency[J].Solar Energy Materials and Solar Cells, 2019, 192: 147-153.doi:10.1016/j.solmat.2018.12.029 [11] YABE T, MOHAMED M S, UCHIDA S,et al. Noncatalytic dissociation of MgO by laser pulses towards sustainable energy cycle[J].Journal of Applied Physics, 2007, 101(12): 123106.doi:10.1063/1.2743730 [12] SAIKI T, UCHIDA S, MOTOKOSHI S,et al. .Development of solar-pumped lasers for space solar power station[C].Proceedings of the 56th International Astronautical Congress, International Astronautical Federation, 2005: 4250. [13] YABE T, OHKUBO T, UCHIDA T,et al. Experimental study of solar pumped laser for magnesium-hydrogen energy cycle[J].Journal of Physics:Conference Series, 2008, 112: 042072.doi:10.1088/1742-6596/112/4/042072 [14] 胡金萍. 聚光光斑的均匀性对聚光光伏系统性能影响的理论研究[D]. 南京: 南京理工大学, 2018.HU J P.Theoretical study on how the non-uniformity of the sunlight spot influences the performance of the concentrating photovoltaic system[D]. Nanjing: Nanjing University of Science and Technology, 2018. (in Chinese) [15] 马军, 王成龙, 夏养君. 线性菲涅尔式太阳能聚光系统二次聚光器研究进展[J]. 中国科学:技术科学,2020,50(8):997-1008.doi:10.1360/SST-2020-0190MA J, WANG CH L, XIA Y J. Research progress on secondary concentrator for linear Fresnel reflector[J].Cientia Sinica Technologica, 2020, 50(8): 997-1008. (in Chinese)doi:10.1360/SST-2020-0190 [16] 黄媛. 复合抛物面聚光器的性能分析和应用研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2019.HUANG Y.Performance analysis on compound parabolic concentrator and its applications[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences), 2019. (in Chinese) [17] 吕家祺, 张宁, 尹鹏, 等. 太阳能光伏聚光器光学设计类型研究进展[J]. 与光电子学进展,2019,56(23):230002.LV J Q, ZHANG N, YIN P,et al. Research progress on optically designed solar photovoltaic concentrators[J].Laser&Optoelectronics Progress, 2019, 56(23): 230002. (in Chinese) [18] 赵会富, 朱浩宇, 童宏伟, 等. 能量均匀分布的菲涅耳聚光系统的设计[J]. 杂志,2018,39(12):10-14.doi:10.14016/j.cnki.jgzz.2018.12.010ZHAO H F, ZHU H Y, TONG H W,et al. Design of energy uniform distribution Fresnel concentration system[J].Laser Journal, 2018, 39(12): 10-14. (in Chinese)doi:10.14016/j.cnki.jgzz.2018.12.010 [19] 杨淑利, 刘志全, 濮海玲. 空间聚光电池阵用拱形菲涅耳透镜的设计与分析[J]. 宇航学报,2014,35(1):106-114.YANG SH L, LIU ZH Q, PU H L. Design and analysis of arched Fresnel-lens for spacial concentrating solar array[J].Journal of Astronautics, 2014, 35(1): 106-114. (in Chinese) [20] CHEN ZH ZH, XU Y T, GUO Y D,et al. 8.2 kW high beam quality quasi-continuous-wave face-pumped Nd: YAG slab amplifier[J].Applied Optics, 2015, 54(16): 5011-5015.doi:10.1364/AO.54.005011 [21] 闫钰锋, 于洋, 白素平, 等. 板条 器光束质量控制技术研究进展[J]. 中国光学,2019,12(4):767-782.doi:10.3788/co.20191204.0767YAN Y F, YU Y, BAI S P,et al. Progress on beam quality control technology of slab lasers[J].Chinese Optics, 2019, 12(4): 767-782. (in Chinese)doi:10.3788/co.20191204.0767 [22] 燕宇翔, 芦宇, 张祥祥. 大功率LED均匀线光源光学系统设计[J]. 照明工程学报,2020,31(1):77-82.doi:10.3969/j.issn.1004-440X.2020.01.014YAN Y X, LU Y, ZHANG X X. Design of optical system for high power LED uniform line light source[J].China Illuminating Engineering Journal, 2020, 31(1): 77-82. (in Chinese)doi:10.3969/j.issn.1004-440X.2020.01.014