Visible light emission of ultraviolet polarization sensitive CsPbBr3nano-films
doi:10.37188/CO.2022-0152
-
摘要:
为了利用可见光学元件实现对紫外偏振光的高性能探测,制备了CsPbBr3纳米晶/金属线栅复合薄膜,并通过向其表面沉积Al2O3钝化层提高了薄膜荧光稳定性,获得了紫外激发下偏振敏感的钙钛矿纳米晶薄膜绿色荧光。测试结果表明,以高温热注入法获得的CsPbBr3纳米晶为立方晶系结构,形貌呈方形,尺寸约39 nm。以紫外光激发纳米晶胶体溶液可在530 nm处观测到明显的绿色荧光。以自组装方法获得的CsPbBr3纳米晶/金属线栅复合薄膜荧光发光强度随紫外激发光的偏振方向呈周期性变化,其发光偏振度约为0.54。以原子层沉积技术向此复合薄膜表面沉积Al2O3层可明显提高其荧光强度,钝化后复合薄膜的发光偏振度仍可达0.36。以上结果表明,表面钝化和引入金属线栅方法可分别优化钙钛矿纳米晶薄膜的荧光稳定性和荧光偏振度,所获得的紫外偏振敏感的CsPbBr3纳米晶复合薄膜在紫外偏振探测以及液晶显示等领域具有重要的应用价值。
-
关键词:
- CsPbBr3纳米晶/
- 表面钝化/
- 荧光增强/
- 偏振
Abstract:In order to detect polarized ultraviolet light by visible optical elements, CsPbBr3nanocrystal/metal wire-grid composited films were prepared. The stability of its fluorescence was improved by depositing Al2O3passivation layer. The green fluorescence of polarization-sensitive perovskite nanocrystals film was obtained under ultraviolet exciting light. The results show that the crystal structure of the CsPbBr3nanocrystals obtained by hot-injection method have a cubic crystal system structure with a square shape and an average size of about 39 nm. An obvious green fluorescence at about 530 nm were observed under ultraviolet light excitation of the nanocrystal colloidal solution. The fluorescence intensity of the CsPbBr3nanocrystal/metal wire-grid composited film obtained by self-assembly changed periodically with the polarization direction of the excited light. The luminous polarization ratio is about 0.54. The fluorescence intensity of this composite film was enhanced when Al2O3was deposited on its surface by atomic layer deposition technology. The polarization ratio of the passivated film can still reach 0.36. The above results show that the fluorescence stability and polarization of perovskite nanocrystals film can be optimized by the surface passivation and the introduction of metal wire-grids, respectively. The obtained ultraviolet polarization sensitive CsPbBr3nanocrystals composited film exhibits important application value in the fields of ultraviolet polarization detection and liquid crystal display.
-
图 4(a) Al2O3钝化前后纳米晶/金属线栅复合薄膜的荧光光谱图;(b) Al2O3钝化前后CsPbBr3纳米晶/金属线栅复合薄膜荧光强度随紫外光照时间变化关系曲线;(c) Al2O3钝化前后CsPbBr3纳米晶薄膜荧光强度随紫外光照时间变化关系曲线(每个图中虚线对应样品经Al2O3钝化后的结果;实线对应样品未沉积Al2O3的结果)
Figure 4.(a) FL spectra of nanocrystal/metal wire-grid composite films before and after Al2O3passivation; (b) plots of FL intensity of the CsPbBr3NCs/metal wire-grid composited film versus time of irradiation by UV light before and after Al2O3passivation; (c) plots of FL intensity of the CsPbBr3NCs film versus time of irradiation by UV light before and after Al2O3passivation (Dotted lines are for samples after Al2O3passivation, and solid lines are for samples before the Al2O3passivation)
图 5(a) 偏振荧光光谱测试原理图;(b) 不同激发光偏振角度对应的CsPbBr3纳米晶/金属线栅复合薄膜偏振荧光光谱图;Al2O3钝化前后CsPbBr3纳米晶/金属线栅复合薄膜荧光强度随激发光角度变化曲线:(c)钝化前,(d)钝化后
Figure 5.(a) Schematic diagram of polarization fluorescence spectroscopy test; (b) FL spectra of CsPbBr3NCs/metal wire-grid composited films corresponding to different polarization angles of the exciting light; plots of FL intensities of the CsPbBr3NCs/metal wire-grid composited film before (c) and after (d) Al2O3passivation versus the polarization angles of the exciting light
-
[1] PROTESESCU L, YAKUNIN S, BODNARCHUK M I,et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut[J].Nano Letters, 2015, 15(6): 3692-3696.doi:10.1021/nl5048779 [2] QU J Y, WANG Y P, SUN J J,et al. Analysis of photoelectric characteristics of a light-damaged schottky perovskite detector[J].Chinese Optics, 2022, 15(4): 668-674. (in Chinese)doi:10.37188/CO.2021-0196 [3] ZHANG Y N, SIEGLER T D, THOMAS C J,et al. A “tips and tricks” practical guide to the synthesis of metal halide perovskite nanocrystals[J].Chemistry of Materials, 2020, 32(13): 5410-5423.doi:10.1021/acs.chemmater.0c01735 [4] CHIBA T, HOSHI K, PU Y J,et al. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment[J].ACS Applied Materials&Interfaces, 2017, 9(21): 18054-18060. [5] WANG Y, LI X M, SONG J ZH,et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics[J].Advanced Materials, 2015, 27(44): 7101-7108.doi:10.1002/adma.201503573 [6] SURENDRAN A, YU X CH, BEGUM R,et al. All inorganic mixed halide perovskite nanocrystal-graphene hybrid photodetector: from ultrahigh gain to Photostability[J].ACS Applied Materials&Interfaces, 2019, 11(30): 27064-27072. [7] ZHU X X, GE Y, LI J J,et al. Research progress of quantum dot enhanced silicon-based photodetectors[J].Chinese Optics, 2020, 13(1): 62-74. (in Chinese)doi:10.3788/co.20201301.0062 [8] WANG L, DONG Y, GAO S,et al. Research progress of perovskite materials in the field of lasers[J].Chinese Optics, 2019, 12(5): 993-1014. (in Chinese)doi:10.3788/co.20191205.0993 [9] WANG B, LIU L J, LIU B,et al. Study on fluorescence properties and stability of Cu2+-Substituted CsPbBr3perovskite quantum dots[J].Physica B:Condensed Matter, 2020, 599: 412488.doi:10.1016/j.physb.2020.412488 [10] WEI Y, CHENG Z Y, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J].Chemical Society Reviews, 2019, 48(1): 310-350.doi:10.1039/C8CS00740C [11] SUN ZH G, WU Y, WEI CH T,et al. Suppressed ion migration in halide perovskite nanocrystals by simultaneous Ni2+doping and halogen vacancy filling[J].Chinese Optics, 2021, 14(1): 77-86. (in Chinese)doi:10.37188/CO.2020-0060 [12] LOIUDICE A, SARIS S, OVEISI E,et al. CsPbBr3QD/AlOxinorganic nanocomposites with exceptional stability in water, light, and heat[J].Angewandte Chemie International Edition, 2017, 56(36): 10696-10701.doi:10.1002/anie.201703703 [13] YIN B, SADTLER B, BEREZIN M Y,et al. Quantum dots protected from oxidative attack using alumina shells synthesized by atomic layer deposition[J].Chemical Communications, 2016, 52(74): 11127-11130.doi:10.1039/C6CC05090E [14] JING Y, CAO K, ZHOU B Z,et al. Two-step hybrid passivation strategy for ultrastable photoluminescence perovskite nanocrystals[J].Chemistry of Materials, 2020, 32(24): 10653-10662.doi:10.1021/acs.chemmater.0c03831 [15] XIANG Q Y, ZHOU B Z, CAO K,et al. Bottom up stabilization of CsPbBr3quantum dots-silica sphere with selective surface passivation via atomic layer deposition[J].Chemistry of Materials, 2018, 30(23): 8486-8494.doi:10.1021/acs.chemmater.8b03096 [16] CHENG C Y, MAO M H. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al2O3using atomic layer deposition[J].Journal of Applied Physics, 2016, 120(8): 083103.doi:10.1063/1.4961425 [17] WANG D, WU D, DONG D,et al. Polarized emission from CsPbX3perovskite quantum dots[J].Nanoscale, 2016, 8(22): 11565-11570.doi:10.1039/C6NR01915C [18] ZHOU Q CH, BAI Z L, LU W G,et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights[J].Advanced Materials, 2016, 28(41): 9163-9168.doi:10.1002/adma.201602651 [19] JIANG J J.The modulation of fluorescence via metallic microstructured materials[D]. Nanjing: Nanjing University, 2015. (in Chinese) [20] MOYEN E, KANWAT A, CHO S,et al. Ligand removal and photo-activation of CsPbBr3quantum dots for enhanced optoelectronic devices[J].Nanoscale, 2018, 10(18): 8591-8599.doi:10.1039/C8NR01396A [21] LI J H, ZHAO D X, MENG X Q,et al. Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method[J].The Journal of Physical Chemistry B, 2006, 110(30): 14685-14687.doi:10.1021/jp061563l [22] GÜNER T, TOPÇU G, SAVACI U,et al. Polarized emission from CsPbBr3nanowire embedded-electrospun PU fibers[J].Nanotechnology, 2018, 29(13): 135202.doi:10.1088/1361-6528/aaaaef [23] HAN Q, LV F Y, WANG H,et al. Investigation on polarization fluorescence properties of all-inorganic perovskite CsPbBr3microrods[J].Semiconductor Optoelectronics, 2019, 40(6): 810-814. (in Chinese) [24] SHI ZH F, LI Y, LI S,et al. Polarized emission effect realized in CH3NH3PbI3perovskite nanocrystals[J].Journal of Materials Chemistry C, 2017, 5(34): 8699-8706.doi:10.1039/C7TC03104A