Bandwidth-tunable terahertz metamaterial half-wave plate component
doi:10.37188/CO.2022-0198
-
摘要:
基于二氧化钒(vanadium dioxide, VO2)的相变原理,提出了一种“树叶型”复合超构材料,能够实现带宽可调谐的半波片功能。VO2薄膜为绝缘态时,复合超构材料可以看作是空芯“树叶型”金属结构,能够实现双频带的半波片功能。在1.01~1.17 THz和1.47~1.95 THz 频带范围内能够将
y 偏振光转换成x 偏振光,偏振转换率大于0.9且平均相对带宽为26%。VO2薄膜为金属态时,实芯“树叶型”金属结构的超构材料在1.13~2.80 THz范围内能够实现反射型的宽频带半波片功能,相对带宽为85%。利用瞬时表面电流分布和电场理论详细地分析了带宽可调谐半波片器件的工作原理。本文所提出的“树叶型”复合超构材料半波片器件在太赫兹成像、传感和偏振探测等领域具有潜在的应用前景。Abstract:We propose a “leaf-type” hybrid metamaterial to realize bandwidth-tunable half-wave plate based on vanadium dioxide (VO2) phase transition. The hybrid metamaterial is regarded as a hollow “leaf-type” metallic structure and act as a dual-band half-wave plate when VO2film is in the insulating phase. Within 1.01−1.17 THz and 1.47−1.95 THz, it can accomplish
y - tox -polarization conversion with a polarization conversion rate over 0.9 and an average relative bandwidth of 26%. The metamaterial becomes a solid core “leaf-type” metallic structure when VO2is in the metallic phase. Within 1.13−2.80 THz, it can act as a broadband half-wave plate with a relative bandwidth of 85%. The working principle of the bandwidth-tunable half-wave plate is explained by the instantaneous surface current distribution and electric field theory in detail. The proposed “leaf-type” hybrid metamaterial half-wave plate has potential application prospects in THz imaging, sensing and polarization detection.-
Key words:
- metamaterial/
- half-wave plate/
- bandwidth-tunable/
- terahertz/
- VO2
-
图 1“树叶型”复合超构材料的工作原理和结构示意图。(a)半波片工作原理图(偏振旋转角φ和倾斜入射角θ已在插图中标注);(b)基本单元的结构参数图
Figure 1.Operation principle of “leaf-type” hybrid metamaterial and it’s structural diagram. (a) Schematic diagram of half-wave plate (The polarization angleφand incident angleθare marked in the inset); (b) structural parameters of a unit cell in the proposed metamaterial
图 2VO2薄膜为不同相态时“树叶型”复合超构材料的反射偏振特性。(a)和(b)共偏振和正交偏振反射系数;(c)和(d)偏振转换率
Figure 2.Reflection polarization properties of “leaf-type” hybrid metamaterial when the VO2film is in different phase states. (a) and (b) Reflection coefficients of co- and cross-polarization; (c) and (d) Polarization Conversion Ratio (PCR)
图 4VO2薄膜为不同相态时,垂直入射的u偏振和v偏振激发“树叶型”复合超构材料的反射系数和相位频谱图。(a)和(b)反射系数ruu,rvv和ruv,rvu;(c)和(d)φuu和φvv及其相位差Δφ(u偏振和v偏振如插图所示)
Figure 4.Reflection coefficients and phases of the hybrid metamaterial for normaluandvpolarization incidences when the VO2film is in different phase states. (a) and (b) Reflection coefficientsruu,rvvandruv,rvu; (c) and (d) reflection phasesφuu,φvvand phase difference Δφ(normaluandvpolarization incidences, as depicted by the inset)
图 5关键频率处的瞬时表面电流分布图。VO2为绝缘态时,(a)1.22 THz、(b)1.68 THz、(c)2.10 THz、(d)2.61 THz;VO2为金属态时,(e)1.22 THz、(f)1.95 THz、(g)2.10 THz、(h)2.71 THz
Figure 5.Instantaneous surface current distributions at critical frequencies. (a) 1.22 THz, (b) 1.68 THz, (c) 2.10 THz, (d) 2.61 THz for VO2film in the complete insulating state; (e) 1.22 THz, (f) 1.95 THz, (g) 2.10 THz, (h) 2.71 THz for VO2film in the complete metallic state
-
[1] KLEINER R. Filling the terahertz gap[J].Science, 2007, 318(5854): 1254-1255.doi:10.1126/science.1151373 [2] LI J T, LI J, ZHENG C L,et al. Active controllable spin-selective terahertz asymmetric transmission based on all-silicon metasurfaces[J].Applied Physics Letters, 2021, 118(22): 221110.doi:10.1063/5.0053236 [3] LIU SH, CUI T J, XU Q,et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J].Light:Science&Applications, 2016, 5(5): e16076. [4] LI J, ZHENG CH L, WANG G C,et al. Circular dichroism-like response of terahertz wave caused by phase manipulation via all-silicon metasurface[J].Photonics Research, 2021, 9(4): 567-573.doi:10.1364/PRJ.415547 [5] WU SH, ZHANG ZH, ZHANG Y,et al. Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforatedS-shaped holes[J].Physical Review Letters, 2013, 110(20): 207401.doi:10.1103/PhysRevLett.110.207401 [6] HAO J M, YUAN Y, RAN L X,et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J].Physical Review Letters, 2007, 99(6): 063908.doi:10.1103/PhysRevLett.99.063908 [7] ZHELUDEV N I, PLUM E, FEDOTOV V A. Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength[J].Applied Physics Letters, 2011, 99(17): 171915.doi:10.1063/1.3656286 [8] MA W, CHENG F, LIU Y M. Deep-learning-enabled on-demand design of chiral metamaterials[J].ACS Nano, 2018, 12(6): 6326-6334.doi:10.1021/acsnano.8b03569 [9] WANG F, LIU X CH, WANG ZH P,et al. A study of asymmetric transmission of terahertz waves based on chiral metamaterials[J].Journal of Harbin Engineering University, 2015, 36(12): 1638-1641. (in Chinese)doi:10.11990/jheu.201501046 [10] ZHELUDEV N I, KIVSHAR Y S. From metamaterials to metadevices[J].Nature Materials, 2012, 11(11): 917-924.doi:10.1038/nmat3431 [11] LIN J, LI Q, QIU M,et al. Coupling between Meta-atoms: a new degree of freedom in metasurfaces manipulating electromagnetic waves[J].Chinese Optics, 2021, 14(4): 717-735. (in Chinese)doi:10.37188/CO.2021-0030 [12] LI M X, WANG D Y, ZHANG CH. Metasurface-based structural color: fundamentals and applications[J].Chinese Optics, 2021, 14(4): 900-926. (in Chinese)doi:10.37188/CO.2021-0108 [13] FU R, LI Z L, ZHENG G X. Research development of amplitude-modulated metasurfaces and their functional devices[J].Chinese Optics, 2021, 14(4): 886-899. (in Chinese)doi:10.37188/CO.2021-0017 [14] LIN R Y, WU Y F, FU B Y,et al. Application of chromatic aberration control of metalens[J].Chinese Optics, 2021, 14(4): 764-781. (in Chinese)doi:10.37188/CO.2021-0096 [15] GRADY N K, HEYES J E, CHOWDHURY D R,et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J].Science, 2013, 340(6138): 1304-1307.doi:10.1126/science.1235399 [16] CHENG Y ZH, WITHAYACHUMNANKUL W, UPADHYAY A,et al. Ultrabroadband reflective polarization convertor for terahertz waves[J].Applied Physics Letters, 2014, 105(18): 181111.doi:10.1063/1.4901272 [17] CONG L Q, CAO W, ZHANG X Q,et al. A perfect metamaterial polarization rotator[J].Applied Physics Letters, 2013, 103(17): 171107.doi:10.1063/1.4826536 [18] HUANG Y Y, YAO Z H, HU F R,et al. Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region[J].Carbon, 2017, 119: 305-313.doi:10.1016/j.carbon.2017.04.037 [19] ZHANG Y, FENG Y J, ZHAO J M. Graphene-enabled tunable multifunctional metamaterial for dynamical polarization manipulation of broadband terahertz wave[J].Carbon, 2020, 163: 244-252.doi:10.1016/j.carbon.2020.03.001 [20] SHEN N H, MASSAOUTI M, GOKKAVAS M,et al. Optically implemented broadband blueshift switch in the terahertz regime[J].Physical Review Letters, 2011, 106(3): 037403.doi:10.1103/PhysRevLett.106.037403 [21] LV T T, ZHU Z, SHI J H,et al. Optically controlled background-free terahertz switching in chiral metamaterial[J].Optics Letters, 2014, 39(10): 3066-3069.doi:10.1364/OL.39.003066 [22] WANG T L, ZHANG H Y, ZHANG Y,et al. Tunable bifunctional terahertz metamaterial device based on dirac semimetals and vanadium dioxide[J].Optics Express, 2020, 28(12): 17434-17448.doi:10.1364/OE.394784 [23] SHU F ZH, WANG J N, PENG R W,et al. Electrically driven tunable broadband polarization states via active metasurfaces based on Joule-heat-induced phase transition of vanadium dioxide[J].Laser&Photonics Reviews, 2021, 15(10): 2100155. [24] ZHU W, YANG R SH, FAN Y CH,et al. Controlling optical polarization conversion with Ge2Sb2Te5-based phase-change dielectric metamaterials[J].Nanoscale, 2018, 10(25): 12054-12061.doi:10.1039/C8NR02587H [25] LI Z L, TANG H W, XU W X,et al. Coding metasurface design for terahertz beam shaping[J].Chinese Journal of Radio Science, 2021, 36(6): 932-937. (in Chinese)doi:10.12265/j.cjors.2021121 [26] ZHENG X X, XIAO ZH Y, LING X Y. A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film[J].Plasmonics, 2018, 13(1): 287-291.doi:10.1007/s11468-017-0512-6 [27] DING F, ZHONG SH M, BOZHEVOLNYI S I. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies[J].Advanced Optical Materials, 2018, 6(9): 1701204.doi:10.1002/adom.201701204 [28] LUO J, SHI X ZH, LUO X Q,et al. Broadband switchable terahertz half-/quarter-wave plate based on metal-VO2metamaterials[J].Optics Express, 2020, 28(21): 30861-30870.doi:10.1364/OE.406006 [29] YANG ZH H, JIANG M ZH, LIU Y CH,et al. Tunable-bandwidth terahertz polarization converter based on a vanadium dioxide hybrid metasurface[J].Chinese Journal of Lasers, 2021, 48(17): 1714001. (in Chinese)doi:10.3788/CJL202148.1714001 [30] LV T T, CHEN X Y, DONG G H,et al. Dual-band dichroic asymmetric transmission of linearly polarized waves in terahertz chiral metamaterial[J].Nanophotonics, 2020, 9(10): 3235-3242.doi:10.1515/nanoph-2019-0507 [31] LIU M, XU Q, CHEN X Y,et al. Temperature-controlled asymmetric transmission of electromagnetic waves[J].Scientific Reports, 2019, 9(1): 4097.doi:10.1038/s41598-019-40791-4 [32] 周高潮. 电磁偏振转换及主动调控超材料器件[D]. 南京: 南京大学, 2018: 57-58.ZHOU G CH. Electromagnetic polarization-converting and active metamaterials[D]. Nanjing: Nanjing University, 2018: 57-58. (in Chinese) [33] ZHANG C H, ZHOU G CH, WU J B,et al. Active control of terahertz waves using vanadium-dioxide-embedded metamaterials[J].Physical Review Applied, 2019, 11(5): 054016.doi:10.1103/PhysRevApplied.11.054016 [34] ZHANG X Y, LI Q, LIU F F,et al. Controlling angular dispersions in optical metasurfaces[J].Light:Science&Applications, 2020, 9(1): 76.