Tunable long-wave infrared optical parametric oscillator based on temperature-adjustable ZnGeP2
-
摘要:
为了获得可调谐长波红外 输出,本文设计了一种基于ZnGeP2(ZGP)温度调谐的长波红外光参量振荡器。采用中心波长为2097 nm的Ho:YAG 器泵浦不同相位匹配角的ZGP晶体,通过改变晶体工作温度来研究ZnGeP2光参量振荡器(ZGP-OPO)的温度调谐特性。在15~30 °C温度范围内,实现了7.53~8.77 μm分段可调谐长波 输出,总调谐宽度为1.24 μm。整个调谐范围内,输出功率大于1.503 W,当闲频光波长为8.77 μm时,输出功率为1.503 W,斜率效率和光光转换效率分别为12.19%和6.53%。实验结果表明,ZGP温度调谐是实现连续可调谐长波红外 输出的有效技术途径。本实验研究在可调谐长波固体 器工程化领域具有潜在的应用价值。
Abstract:In order to realize tunable longwave infrared laser, we design a ZGP temperature tuned longwave infrared optical parametric oscillator. A Ho:YAG laser with the center wavelength of 2097 nm is used to pump ZGP crystals with different phase matching angles. The temperature adjustable properties of ZGP-OPO is researched by changing the operating temperature of crystal. The laser with a segment continuously tunable range of 7.53−8.77 μm is realized in the temperature range of 15−30°C, with a total tuning range of 1.24 μm. The output power of ZnGeP2-Optical Parametric Oscillator(ZGP-OPO) is greater than 1.503 W over the entire tuning range. The output power is 1.503 W at the idler wavelength of 8.77 μm, and the corresponding slope efficiency and optical conversion efficiency are 12.19% and 6.53%, respectively. The experimental results show that temperature tuning of ZGP is an effective technical method to obtain continuously tunable long-wave infrared laser. This research has potential application value in the field of engineering of tunable long-wave laser.
-
Key words:
- temperature tunable/
- optical parametric oscillator/
- ZnGeP2/
- long-wave
-
表 1Sellmeier方程中的各参数值
Table 1.Parameter values in Sellmeier equations
Parameter Value ne no A(T) 5.23-6.4345×10−4T
+1.8373×10−6T2
−4.9464×10−9T34.4011+7.948×10−5T
+2.0697×10−6T2
−6.3256×10−9T3B(T) 4.5037+1.2308×10−3T
−9.7765×10−7T2
+4.6323×10−9T35.1168+4.0214×10−4T
−1.0452×10−6T2
+5.8067×10−9T3c 0.15503 0.134894 d 1.56991 1.31394 f 706.750 603.937 -
[1] MELKONIAN J M, ARMOUGOM J, RAYBAUT M,et al. Long-wave infrared multi-wavelength optical source for standoff detection of chemical warfare agents[J].Applied Optics, 2020, 59(35): 11156-11166.doi:10.1364/AO.410053 [2] 陈颖. 机载先进红外对抗技术发展思考[J]. 航天电子对抗,2020,36(1):19-23.doi:10.3969/j.issn.1673-2421.2020.01.005CHEN Y. Development of airborne advanced infrared countermeasures technology[J].Aerospace Electronic Warfare, 2020, 36(1): 19-23. (in Chinese)doi:10.3969/j.issn.1673-2421.2020.01.005 [3] SIJAN A. Development of military lasers for optical countermeasures in the mid-IR[J].Proceedings of SPIE, 2009, 7483: 748304.doi:10.1117/12.835439 [4] LU Y, ZHU Z R, BAI J ZH,et al. Generation of tail-free short pulses using high-pressure CO2laser[J].Chinese Optics Letters, 2022, 20(5): 051401.doi:10.3788/COL202220.051401 [5] 潘其坤, 苗昉晨, 司红利, 等. 紧凑型波长自动调谐脉冲CO2 器[J]. 中国光学(中英文),2022,15(5):1007-1012.doi:10.37188/CO.2022-0107PAN Q K, MIAO F CH, SI H L,et al. Compact pulsed CO2laser with wavelength automatic tuning[J].Chinese Optics, 2022, 15(5): 1007-1012. (in Chinese)doi:10.37188/CO.2022-0107 [6] 姚宝权, 杨科, 密淑一, 等. 高功率Ho: YAG 器及其泵浦的磷锗锌、硒镓钡和硒化镉中长波红外非线性光学频率转换研究进展[J]. 中国 ,2022,49(1):0101002.doi:10.3788/CJL202249.0101002YAO B Q, YANG K, MI SH Y,et al. Research progress of high-power Ho: YAG lasers and its application for pumping mid-far-infrared nonlinear frequency conversion in ZGP, BGSe and CdSe crystals[J].Chinese Journal of Lasers, 2022, 49(1): 0101002. (in Chinese)doi:10.3788/CJL202249.0101002 [7] 李充, 谢冀江, 潘其坤, 等. 中红外光学参量振荡器技术进展[J]. 中国光学,2016,9(6):615-624.LI CH, XIE J J, PAN Q K,et al. Progress of mid-infrared optical parametric oscillator[J].Chinese Optics, 2016, 9(6): 615-624. (in Chinese) [8] 黄彦, 张宇露, 高志强, 等. 用于痕量气体检测的宽调谐外腔量子级联 器研究[J]. 遥测遥控,2019,40(1):20-27.doi:10.3969/j.issn.2095-1000.2019.01.004HUANG Y, ZHANG Y L, GAO ZH Q,et al. Research on widely tunable external cavity quantum cascade lasers for trace gas detection[J].Journal of Telemetry,Tracking and Command, 2019, 40(1): 20-27. (in Chinese)doi:10.3969/j.issn.2095-1000.2019.01.004 [9] QIAN CH P, DUAN X M, YAO B Q,et al. 11.4 W long-wave infrared source based on ZnGeP2optical parametric amplifier[J].Optics Express, 2018, 26(23): 30195-30201.doi:10.1364/OE.26.030195 [10] HAIDAR S, MIYAMOTO K, ITO H. Generation of tunable mid-IR (5.5 - 9.3 μm) from a 2-μm pumped ZnGeP2optical parametric oscillator[J].Optics Communications, 2004, 241(1-3): 173-178.doi:10.1016/j.optcom.2004.06.065 [11] LIU G Y, CHEN Y, YAO B Q,et al. 3.5 W long-wave infrared ZnGeP2optical parametric oscillator at 9.8 µm[J].Optics Letters, 2020, 45(8): 2347-2350.doi:10.1364/OL.389603 [12] TIAN J T, LI ZH Y, ZHAO L L,et al. Long-wave infrared ZnGeP2optical parametric oscillator with improved tunability by use of a cavity compensation technique[J].Optical Engineering, 2022, 61(7): 076102. [13] DAS S. Pump tuned wide tunable noncritically phase-matched ZnGeP2narrow line width optical parametric oscillator[J].Infrared Physics&Technology, 2015, 69: 13-18. [14] 孟冬冬, 乔占朵, 高宝光, 等. 基于ZnGeP2光参量振荡器的长波红外双波段调谐实验研究[J]. 红外与 工程,2022,51(5):2021G008.doi:10.3788/IRLA2021G008MENG D D, QIAO ZH D, GAO B G,et al. Experimental study on tunable characteristics of optical parametric oscillator based on ZnGeP2in long-infared dual-band[J].Infrared and Laser Engineering, 2022, 51(5): 2021G008. (in Chinese)doi:10.3788/IRLA2021G008 [15] BHAR G, GHOSH G. Temperature dependent phase-matched nonlinear optical devices using CdSe and ZnGeP2[J].IEEE Journal of Quantum Electronics, 1980, 16(8): 838-843.doi:10.1109/JQE.1980.1070580 [16] IONIN A A, KINYAEVSKIY I O, KLIMACHEV Y M,et al. Temperature phase-matching tuning of nonlinear ZnGeP2crystal for frequency conversion under noncritical spectral phase-matching[J].Infrared Physics&Technology, 2019, 102: 103009. [17] GUHA S. Updated temperature dependent Sellmeier equations for ZnGeP2crystals (Conference Presentation)[J].Proceedings of SPIE, 2019, 10902: 1090210.