留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进引导滤波器的多光谱去马赛克方法

齐海超,宋延嵩,张博,梁宗林,闫纲琦,薛佳音,张轶群,任斌

downloadPDF
齐海超, 宋延嵩, 张博, 梁宗林, 闫纲琦, 薛佳音, 张轶群, 任斌. 基于改进引导滤波器的多光谱去马赛克方法[J]. , 2023, 16(5): 1056-1065. doi: 10.37188/CO.2022-0231
引用本文: 齐海超, 宋延嵩, 张博, 梁宗林, 闫纲琦, 薛佳音, 张轶群, 任斌. 基于改进引导滤波器的多光谱去马赛克方法[J]. , 2023, 16(5): 1056-1065.doi:10.37188/CO.2022-0231
QI Hai-chao, SONG Yan-song, ZHANG Bo, LIANG Zong-lin, YAN Gang-qi, XUE Jia-yin, ZHANG Yi-qun, REN Bin. Multispectral demosaicing method based on an improved guided filter[J]. Chinese Optics, 2023, 16(5): 1056-1065. doi: 10.37188/CO.2022-0231
Citation: QI Hai-chao, SONG Yan-song, ZHANG Bo, LIANG Zong-lin, YAN Gang-qi, XUE Jia-yin, ZHANG Yi-qun, REN Bin. Multispectral demosaicing method based on an improved guided filter[J].Chinese Optics, 2023, 16(5): 1056-1065.doi:10.37188/CO.2022-0231

基于改进引导滤波器的多光谱去马赛克方法

doi:10.37188/CO.2022-0231
基金项目:国家重点研发计划资助项目(No. 2022YFB3902500);国家自然科学基金资助项目(No. U2141231);吉林省自然科学基金(No. 202002036JC);鹏城实验室重大攻关项目(No. PCL2021A03-1)
详细信息
    作者简介:

    齐海超(1997—),男,吉林长春人,硕士研究生,2019年于长春理工大学获得学士学位,主要从事图像处理方面的研究。E-mail:qihaichao2019@163.com

    宋延嵩(1983—),男,吉林长春人,博士,研究员,博士生导师,2006年、2009年、2014年于长春理工大学分别获得学士、硕士及博士学位,主要研究方向为空间 通信技术。E-mail:songyansong2006@126.com

  • 中图分类号:TP391.9

Multispectral demosaicing method based on an improved guided filter

Funds:Supported by National Key R & D Program of China (No. 2022YFB3902500); National Natural Science Foundation of China (No.U2141231); the Natural Science Foundation of Jilin Province (No. 202002036JC); The Major Key Project of PCL (No. PCL2021A03-1)
More Information
  • 摘要:

    为了更好地保留多光谱去马赛克图像中的高频信息,本文提出了一种基于改进引导滤波器的多光谱图像去马赛克方法。首先,基于自回归模型对相邻像素点间的强相关性进行建模,在每个像素处渐进估计其模型参数,通过最小化局部窗口内的估计误差,得到最优估计值来插值采样密集波段G,并生成高质量的引导图像;然后,引入加窗固有变分系数到惩罚因子中,得到具有边缘感知能力的加权引导滤波器并重建其余稀疏采样波段。最后,使用CAVE数据集和TokyoTech数据集进行仿真。实验结果表明:相较于主流的5波段多光谱图像去马赛克方法,本方法重建图像的峰值信噪比和结构相似度在CAVE数据集和TokyoTech数据集上分别提高了3.40%,2.02%,1.34%,0.30%和6.11%,5.95%,2.28%,1.42%,且更好地保留了原始图像的局部结构和颜色信息,减少了边缘伪影和噪声现象的出现。

  • 图 15波段MSFA(a)二叉树分裂过程及(b)排列模式

    Figure 1.(a) Binary tree splitting process and (b) arrangement of Five-band MSFA

    图 2邻域T内像素排列

    Figure 2.Pixel arrangement in neighborhoodT

    图 3水平-垂直方向上的自回归模型

    Figure 3.Autoregressive model in the horizontal-vertical direction

    图 4模型参数估计

    Figure 4.Estimation of model parameter

    图 5基于加权引导滤波的去马赛克流程

    Figure 5.Demosaicing process based on weight-guided filtering

    图 6不同算法Balloons场景重建图像对比

    Figure 6.Comparison of Balloons images reconstructed by different algorithms

    图 7不同算法CD场景重建图像对比

    Figure 7.Comparison of CD images reconstructed by different algorithms

    图 8不同算法Party场景重建图像对比

    Figure 8.Comparison of party images reconstructed by different algorithms

    表 1CAVE数据集上3种方法的客观评价指标

    Table 1.Objective evaluation metrics of the three methods on the CAVE dataset

    CAVE sRGB PSNR/dB sRGB SSIM CIEDE 2000
    GF APMID Pro GF APMID Pro GF APMID Pro
    Balloons 41.62 42.68 43.11 0.9859 0.9916 0.9936 1.18 1.06 0.99
    Clay 37.33 37.63 38.69 0.8758 0.8817 0.8852 1.07 0.94 0.89
    Beers 41.57 42.18 43.52 0.9816 0.9868 0.9894 1.25 1.28 1.07
    Lemons 42.91 42.87 42.91 0.9749 0.9805 0.9822 1.11 1.08 1.03
    Peppers 42.14 42.08 42.52 0.9715 0.9801 0.9805 0.89 0.78 0.73
    Feathers 35.64 35.94 35.99 0.9413 0.9593 0.9614 2.30 2.10 2.04
    Flowers 38.93 41.18 42.50 0.9523 0.9778 0.9824 1.26 0.91 0.83
    Paints 36.16 34.88 36.32 0.9696 0.9729 0.9797 2.40 2.43 2.17
    Apples 45.24 45.10 45.68 0.9838 0.9875 0.9886 0.77 0.75 0.70
    Toys 38.83 41.29 42.77 0.9666 0.9845 0.9891 1.24 0.90 0.80
    Avg 40.04 40.58 41.40 0.9603 0.9703 0.9732 1.35 1.22 1.13
    下载: 导出CSV

    表 2TokyoTech数据集上3种方法的客观评价指标

    Table 2.Objective evaluation metrics of the three methods on the TokyoTech dataset

    TokyoTech sRGB PSNR/dB sRGB SSIM CIEDE 2000
    GF APMID Pro GF APMID Pro GF APMID Pro
    Butterfly 37.53 38.95 40.44 0.9596 0.9678 0.9810 1.60 1.42 1.17
    Butterfly3 38.42 42.94 41.99 0.9487 0.9777 0.9793 1.37 0.91 0.84
    Butterfly4 40.63 40.73 42.37 0.9691 0.9590 0.9827 1.12 1.23 0.87
    CD 32.20 32.78 32.87 0.9450 0.9580 0.9629 1.97 1.72 1.65
    Character 37.74 37.45 38.14 0.9673 0.9736 0.9835 1.83 1.94 1.73
    Cloth 34.18 35.00 35.87 0.9321 0.9481 0.9573 3.34 3.22 2.75
    Color 39.22 38.62 41.36 0.9782 0.9630 0.9895 1.74 2.00 1.47
    Colorchart 42.83 44.79 47.80 0.9819 0.9847 0.9941 0.92 0.77 0.55
    Fan2 32.68 33.29 34.09 0.9257 0.9426 0.9629 2.63 2.34 2.04
    Party 32.79 33.45 35.78 0.9366 0.9509 0.9693 2.06 1.66 1.36
    Avg 36.82 37.80 39.07 0.9544 0.9625 0.9762 1.86 1.72 1.44
    下载: 导出CSV

    表 3不同方法在两种数据集上的运行时间

    Table 3.Running times of different methods on the two datasets (s)

    数据集 GF APMID Pro
    CAVE 1.49 0.71 1.33
    TokyoTech 1.36 0.56 1.29
    下载: 导出CSV
  • [1] ORTEGA S, HALICEK M, FABELO H,et al. Hyperspectral and multispectral imaging in digital and computational pathology: a systematic review[J].Biomedical Optics Express, 2020, 11(6): 3195-3233.doi:10.1364/BOE.386338
    [2] 王成, 刘宾, 周楚, 等. 窄带LED照明的多光谱显微成像系统研究[J]. 中国 ,2020,47(12):1207006.doi:10.3788/CJL202047.1207006

    WANG CH, LIU B, ZHOU CH,et al. Multispectral microimaging system with narrowband LED illumination[J].Chinese Journal of Lasers, 2020, 47(12): 1207006. (in Chinese)doi:10.3788/CJL202047.1207006
    [3] 唐凌宇, 葛明锋, 董文飞. 全自动推扫式高光谱显微成像系统设计与研究[J]. 中国光学,2021,14(6):1486-1494.doi:10.37188/CO.2021-0040

    TANG L Y, GE M F, DONG W F. Design and research of fully automatic push-broom hyperspectral microscopic imaging system[J].Chinese Optics, 2021, 14(6): 1486-1494. (in Chinese)doi:10.37188/CO.2021-0040
    [4] SU W H, SUN D W. Multispectral imaging for plant food quality analysis and visualization[J].Comprehensive Reviews in Food Science and Food Safety, 2018, 17(1): 220-239.doi:10.1111/1541-4337.12317
    [5] CHAMBINO L L, SILVA J S, BERNARDINO A. Multispectral facial recognition: a review[J].IEEE Access, 2020, 8: 207871-207883.doi:10.1109/ACCESS.2020.3037451
    [6] WU F, JING X Y, FENG Y J,et al. Spectrum-aware discriminative deep feature learning for multi-spectral face recognition[J].Pattern Recognition, 2021, 111: 107632.doi:10.1016/j.patcog.2020.107632
    [7] 李云辉. 压缩光谱成像系统中物理实现架构研究综述[J]. 中国光学(中英文),2022,15(5):929-945.doi:10.37188/CO.2022-0104

    LI Y H. Review of physical implementation architecture in compressive spectral imaging system[J].Chinese Optics, 2022, 15(5): 929-945. (in Chinese)doi:10.37188/CO.2022-0104
    [8] 杨鹰, 孔玲君, 刘真. 基于压缩感知的多光谱图像去马赛克算法[J]. 液晶与显示,2017,32(1):56-61.doi:10.3788/YJYXS20173201.0056

    YANG Y, KONG L J, LIU ZH. Multi-spectral demosaicking method based on compressive sensing[J].Chinese Journal of Liquid Crystals and Displays, 2017, 32(1): 56-61. (in Chinese)doi:10.3788/YJYXS20173201.0056
    [9] HABTEGEBRIAL T A, REIS G, STRICKER D. Deep convolutional networks for snapshot hypercpectral demosaicking[C].2019 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing(WHISPERS), IEEE, 2019: 1-5.
    [10] FENG K, ZHAO Y Q, CHAN J C W,et al. Mosaic convolution-attention network for demosaicing multispectral filter array images[J].IEEE Transactions on Computational Imaging, 2021, 7: 864-878.doi:10.1109/TCI.2021.3102052
    [11] 肖树林, 胡长虹, 高路尧, 等. 像元映射变分辨率光谱成像重构[J]. 中国光学(中英文),2022,15(5):1045-1054.

    XIAO SH L, HU CH H, GAO L Y,et al. Pixel mapping variable-resolution spectral imaging reconstruction[J].Chinese Optics, 2022, 15(5): 1045-1054. (in Chinese)
    [12] MIAO L D, QI H R. The design and evaluation of a generic method for generating mosaicked multispectral filter arrays[J].IEEE Transactions on Image Processing, 2006, 15(9): 2780-2791.doi:10.1109/TIP.2006.877315
    [13] MIAO L D, QI H R, RAMANATH R,et al. Binary tree-based generic demosaicking algorithm for multispectral filter arrays[J].IEEE Transactions on Image Processing, 2006, 15(11): 3550-3558.doi:10.1109/TIP.2006.877476
    [14] GUPTA M, RAM M. Weighted bilinear interpolation based generic multispectral image demosaicking method[J].Journal of Graphic Era University, 2019, 7(2): 108-118.
    [15] GUPTA M, RATHI V, GOYAL P. Adaptive and progressive multispectral image demosaicking[J].IEEE Transactions on Computational Imaging, 2022, 8: 69-80.doi:10.1109/TCI.2022.3140554
    [16] 孙帮勇, 袁年曾, 胡炳樑. 一种八谱段滤光片成像系统设计[J]. 光子学报,2020,49(5):0511001.doi:10.3788/gzxb20204905.0511001

    SUN B Y, YUAN N Z, HU B L. Design of an eight-band filter imaging system[J].Acta Photonica Sinica, 2020, 49(5): 0511001. (in Chinese)doi:10.3788/gzxb20204905.0511001
    [17] RATHI V, GOYAL P. Generic multispectral Demosaicking based on directional interpolation[J].IEEE Access, 2022, 10: 64715-64728.doi:10.1109/ACCESS.2022.3182493
    [18] MONNO Y, TANAKA M, OKUTOMI M. Multispectral demosaicking using guided filter[J].Proceedings of SPIE, 2012, 8299: 82990O.doi:10.1117/12.906168
    [19] 任杰, 刘家瑛, 白蔚, 等. 基于隐式分段自回归模型的图像插值算法[J]. 软件学报,2012,23(5):1248-1259.doi:10.3724/SP.J.1001.2012.04049

    REN J, LIU J Y, BAI W,et al. Image interpolation algorithm based on implicit piecewise autoregressive model[J].Journal of Software, 2012, 23(5): 1248-1259. (in Chinese)doi:10.3724/SP.J.1001.2012.04049
    [20] ZHANG X J, WU X L. Image interpolation by adaptive 2-D autoregressive modeling and soft-decision estimation[J].IEEE Transactions on Image Processing, 2008, 17(6): 887-896.doi:10.1109/TIP.2008.924279
    [21] HE K M, SUN J, TANG X O. Guided image filtering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.doi:10.1109/TPAMI.2012.213
    [22] LI ZH G, ZHENG J H, ZHU Z J,et al. Weighted guided image filtering[J].IEEE Transactions on Image Processing, 2015, 24(1): 120-129.doi:10.1109/TIP.2014.2371234
    [23] XU L, YAN Q, XIA Y,et al. Structure extraction from texture via relative total variation[J].ACM Transactions on Graphics, 2012, 31(6): 139.
    [24] 路陆, 姜鑫, 杨锦程, 等. 基于自适应引导滤波的红外图像细节增强[J]. 液晶与显示,2022,37(9):1182-1189.doi:10.37188/CJLCD.2022-0024

    LU L, JIANG X, YANG J CH,et al. Adaptive guided filtering based infrared image detail enhancement[J].Chinese Journal of Liquid Crystals and Displays, 2022, 37(9): 1182-1189. (in Chinese)doi:10.37188/CJLCD.2022-0024
    [25] YASUMA F, MITSUNAGA T, ISO D,et al. Generalized assorted pixel camera: Postcapture control of resolution, dynamic range, and spectrum[J].IEEE Transactions on Image Processing, 2010, 19(9): 2241-2253.doi:10.1109/TIP.2010.2046811
    [26] MONNO Y, KIKUCHI S, TANAKA M,et al. A practical one-shot multispectral imaging system using a single image sensor[J].IEEE Transactions on Image Processing, 2015, 24(10): 3048-3059.doi:10.1109/TIP.2015.2436342
    [27] PARK J I, LEE M H, GROSSBERG M D,et al. . Multispectral imaging using multiplexed illumination[C].2007 IEEE 11th International Conference on Computer Vision, IEEE, 2007: 1-8.
    [28] SARA U, AKTER M, UDDIN M S. Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study[J].Journal of Computer and Communications, 2019, 7(3): 8-18.doi:10.4236/jcc.2019.73002
    [29] SHARMA G, WU W CH, DALAL E N. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations[J].Color Research&Application, 2005, 30(1): 21-30.
    [30] 贾停停, 王慧琴, 王可, 等. 相位相关性增强的自适应低重叠率多光谱图像快速拼接算法[J]. 液晶与显示,2022,37(4):483-493.doi:10.37188/CJLCD.2021-0294

    JIA T T, WANG H Q, WANG K,et al. Adaptive low overlap multispectral image fast mosaic algorithm based on phase correlation enhancement[J].Chinese Journal of Liquid Crystals and Displays, 2022, 37(4): 483-493. (in Chinese)doi:10.37188/CJLCD.2021-0294
  • 加载中
图(8)/ 表(3)
计量
  • 文章访问数:229
  • HTML全文浏览量:126
  • PDF下载量:187
  • 被引次数:0
出版历程
  • 收稿日期:2022-11-13
  • 修回日期:2022-12-12
  • 网络出版日期:2023-04-17

目录

    /

      返回文章
      返回
        Baidu
        map