Influencing factors of angle measurement accuracy of an interferometer star tracker
-
摘要:
为了提高传统星敏感器的姿态测量精度,可将干涉测角技术与传统星敏感器相结合,即在传统星敏感器质心定位技术的基础上,利用星像点的光强信息进一步进行细分,从而突破了质心定位的精度限制,形成具有大视场高精度的干涉星敏感器。本文对制约干涉星敏感器测角精度的因素进行深入研究,重点研究干涉条纹的分割误差对测角精度的影响机理。通过研究分析,得出以下结论:光锲阵列不等分误差不是影响干涉星敏感器测角精度的主要因素;莫尔条纹周期与光楔阵列整体通光尺寸不匹配误差小于1%时,可保证单因素测角误差小于0.01";对于莫尔条纹取向与光楔阵列排布方向不正交误差,条纹旋转角度应当小于0.1°,可保证单因素测角误差小于0.01"。所以,应在实际加工与装调过程中抑制上述两个主要误差,从而使干涉星敏感器的实际测角精度接近高精度理论值。
Abstract:In order to improve the traditional attitude measurement accuracy of star sensors, interference angle measuring technology can be combined with a traditional star sensor. Based on the centroid positioning technology of traditional star sensors, the light intensity information of star image points is subdivided to break through the accuracy limitation of centroid positioning and obtain a highly precise interferometric star sensor with a large field of view. In this paper, the factors that restrict the angle measurement accuracy of interferometer sensors are deeply studied with particular interest given to the influence of interference fringe segmentation error on angle measurement accuracy. Through research and analysis, we conclude that the asymmetry error is not the main factor affecting the angle measurement accuracy of interferometric sensors. When the mismatch error between the Moire fringe period and the overall optical dimension of the optical wedge array is less than 1%, the single-factor angle measurement error is less than 0.01". For non-orthogonal error between Moire fringe orientation and an optical wedge’s array arrangement direction, the accuracy error of single-factor angle measurement is sure to be less than 0.01" when the fringe rotation angle is less than 0.1°. Therefore, the above two main errors should be suppressed in the production and assembly so that the measurement accuracy of the interferometer sensor is closer to the high-precision theoretical value.
-
-
[1] 朱俊青, 沙巍, 方超, 等. 星敏镜头参数化建模辅助设计[J]. 中国光学,2021,14(3):615-624. doi: 10.37188/CO.2021-0029ZHU J Q, SHA W, FANG CH, et al. Parametric modeling aided design for star sensor lens[J]. Chinese Optics, 2021, 14(3): 615-624. (in Chinese) doi: 10.37188/CO.2021-0029 [2] 王维, 陆琳, 张天一, 等. 10-9量级高灵敏度点源透射比测试设备研究[J]. 中国光学,2021,14(2):390-396. doi: 10.37188/CO.2020-0050WANG W, LU L, ZHANG T Y, et al. A 10-9 order point source transmission test facility[J]. Chinese Optics, 2021, 14(2): 390-396. (in Chinese) doi: 10.37188/CO.2020-0050 [3] 张健, 王健飞, 方新, 等. 航空遥感器平面反射镜系统装调方法[J]. 中国光学,2022,15(3):534-544. doi: 10.37188/CO.2021-0187ZHANG J, WANG J F, FANG X, et al. Alignment method of plane reflecting mirror system for aerial remote sensor[J]. Chinese Optics, 2022, 15(3): 534-544. (in Chinese) doi: 10.37188/CO.2021-0187 [4] 孟庆宇, 秦子长, 任成明, 等. 光学系统降敏设计方法综述[J]. 中国光学,2022,15(5):863-877. doi: 10.37188/CO.2022-0096MENG Q Y, QIN Z CH, REN CH M, et al. Review of optical systems’ desensitization design methods[J]. Chinese Optics, 2022, 15(5): 863-877. (in Chinese) doi: 10.37188/CO.2022-0096 [5] 孙瑾秋, 周军, 张臻, 等. 基于能量累加的空间目标星像质心定位[J]. 光学 精密工程,2011,19(12):3043-3048. doi: 10.3788/OPE.20111912.3043SUN J Q, ZHOU J, ZHANG ZH, et al. Centroid location for space targets based on energy accumulation[J]. Optics and Precision Engineering, 2011, 19(12): 3043-3048. (in Chinese) doi: 10.3788/OPE.20111912.3043 [6] 杨君, 张涛, 宋靖雁, 等. 星点质心亚像元定位的高精度误差补偿法[J]. 光学 精密工程,2010,18(4):1002-1010.YANG J, ZHANG T, SONG J Y, et al. High accuracy error compensation algorithm for star image sub-pixel subdivision location[J]. Optics and Precision Engineering, 2010, 18(4): 1002-1010. (in Chinese) [7] 许威. 星点快速提取与高精度定位技术研究[D]. 杭州: 浙江大学, 2013.XU W. Star fast extraction and high accuracy centroid estimation of star camera[D]. Hangzhou: Zhejiang University, 2013. (in Chinese) [8] 王晓东. 大视场高精度星敏感器技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2003.WANG X D. Study on wild-field-of-view and high-accuracy star sensor technologies[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2003. (in Chinese) [9] HUTCHIN R A. Interferometric tracking device: US, 8045178[P]. 2011-10-25. [10] DU J, BAI J, WANG L, et al. Optical design and accuracy analysis of interferometric star tracker[J]. Proceedings of SPIE, 2018, 10815: 1081504. [11] 张淑芬, 姜珊, 董磊, 等. 基于衍射光栅的高精度干涉星敏感器的理论分析[J]. 中国光学,2021,14(6):1368-1377. doi: 10.37188/CO.2021-0051ZHANG SH F, JIANG SH, DONG L, et al. High accuracy interferometric star tracker based on diffraction grating[J]. Chinese Optics, 2021, 14(6): 1368-1377. (in Chinese) doi: 10.37188/CO.2021-0051 [12] 魏政. 面向近地应用的干涉式全天时星敏感器恒星探测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.WEI ZH. Research on star detection technology of interferometric daytime star sensor for near-earth application[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese) [13] 张淑芬. 基于衍射光栅的高精度干涉星敏感器研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.ZHANG SH F. Research on high accuracy interferometric star tracker based on diffraction grating[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2021. (in Chinese) [14] NAKANO Y, MURATA K. Talbot interferometry for measuring the focal length of a lens[J]. Applied Optics, 1985, 24(19): 3162-3166. doi: 10.1364/AO.24.003162 [15] WYANT J C. Use of an ac heterodyne lateral shear interferometer with real-time wavefront correction systems[J]. Applied Optics, 1975, 14(11): 2622-2626. doi: 10.1364/AO.14.002622 [16] HARDY J W, MACGOVERN A J. Shearing interferometry: a flexible technique for wavefront measurement[J]. Proceedings of SPIE, 1987, 816: 180-195. doi: 10.1117/12.941765 [17] COLAVITA M M. Fringe visibility estimators for the palomar testbed interferometer[J]. Publications of the Astronomical Society of the Pacific, 1999, 111(755): 111-117. doi: 10.1086/316302 [18] GLINDEMANN A. Principles of Stellar Interferometry[M]. Berlin Heidelberg: Springer-Verlag, 2011: 287-292. [19] 董磊, 阮宇翔, 王建立, 等. 基于计算干涉测量的远距离目标高精度角度测量技术研究进展[J]. 与光电子学进展,2021,58(18):1811016.DONG L, RUAN Y X, WANG J L, et al. Progress in high accurate angle measurement technology of long-distance target based on computational interferometry[J]. Laser &Optoelectronics Progress, 2021, 58(18): 1811016. (in Chinese)