-
摘要:
作为一种新型光电探测技术,偏振成像可同时获取场景的空间分布和偏振特征,针对特定应用场景具有优异的材质区分及轮廓辨识能力,广泛应用于目标探测、生命科学、环境监测、三维成像等领域。偏振分光或滤光器件是偏振成像系统的核心元件,然而该类传统器件受限于体积庞大、性能不佳、易受干扰等问题,难以满足高集成、高性能、高可靠性偏振成像系统的要求。超构表面是一种结构单元以亚波长间隔准周期排列而成的二维平面器件,可在不同偏振方向对光场的振幅、相位进行精细操纵。基于超构表面的偏振器件具有体积小、重量轻、维度高等特点,为集成化偏振成像系统提供了新的解决方案。本文针对偏振成像,综述相关超构表面的功能原理、发展脉络和未来趋势,讨论并展望其在成像应用和系统集成方面所面临的挑战与机遇。
Abstract:Polarization imaging, a novel photoelectric detection technology, can simultaneously acquire the contour information and polarization features of a scene. For specific application scenarios, polarization imaging has the excellent ability to distinguish different objects and highlight their outlines. Therefore, polarization imaging has been widely applied in the fields of object detection, underwater imaging, life science, environmental monitoring, 3D imaging, etc. Polarization splitting or the filtering device is the core element in a polarization imaging system. The traditional counterpart suffers from a bulky size, poor optical performance, and being sensitive to external disturbances, and can hardly meet the requirements of a highly integrated, highly functional, and highly stable polarization imaging system. A metasurface is a two-dimensional planar photonic device whose comprising units are arranged quasi-periodically at subwavelength intervals, and can finely regulate the amplitude and phase of the light field in different polarization directions. Polarization devices based on metasurface are featured with compactness, lightweight and multi-degree freedom, offering an original solution to ultracompact polarization imaging systems. Targeted at the field of polarization imaging, this paper illustrates the functional theory, developmental process and future tendency of related metasurfaces. We discuss the challenges and prospect on the future of imaging applications and systematic integrations with metasurfaces.
-
Key words:
- optical device /
- micro-nano structure /
- metasurface /
- polarization imaging /
- imaging system
-
图 1 基于等离激元结构和全电介质结构的超构表面。(a)基于GSP结构的全斯托克斯偏振测定光栅型超构表面[84];(b)该光栅型超构表面由3组相位梯度不同的微纳结构阵列组成,可调控(x, y)、(a, b)、(l, r)正交偏振态[84];(c)基于GSP结构的光栅型圆偏振分光超构表面[85];(d)基于GSP的透镜型偏振分光超构表面[86];(e)超构单元包含2种TiO2微纳结构,分别调控左旋和右旋偏振光[92];(f)圆二色性甲虫外骨骼成像实验[92];(g)超像元由分别会聚x,y,a,b,l,r偏振态的超构透镜组成[93];(h)该超构表面可作为Hartmann-Shack波前传感器,径向偏振光的强度分布(左),解析得到的偏振轮廓图(右)[93]
Figure 1. Metasurfaces based on plasmonic and all dielectric structures. (a) Metagrating based on a GSP structure for the determination of full Stokes parameters[84]; (b) the metagrating consists three kinds of micro-nano structure arrays with different phase gradients, which can manipulate orthogonal polarization states (x, y), (a, b), (l, r)[84]; (c) circular polarization splitting GSP-based metagrating[85]; (d) polarization splitting and focusing metasurface GSP-based metalens[86]; (e) meta-atom includes two kinds of TiO2 nano-micro structures manipulating left-handed and right-handed circular polarization light, respectively; (f) polarization image of the exoskeleton of a chiral beetle[92]; (g) meta-pixel is composed of metalenses focusing x,y,a,b,l,r polarization states, respectively[93]; (h) the metasurface can be served as Hartmann-Shack wavefront sensor, intensity distribution of radially polarized beam (left), and calculated polarization profile (right)[93]
图 2 基于几何相位和传输相位原理的全电介质超构表面。(a)由非晶硅纳米椭圆柱构建的超构表面[101];(b)光栅型偏振分光超构表面、透镜型偏振分光超构表面、偏振调控全息超构表面和偏振调控特殊光场生成超构表面[101];(c)透镜阵列型偏振分光超构表面[102];(d)目标偏振图案(左)、基于常规偏振成像方法得到的偏振图案(中)、基于超构表面得到的偏振图案(右)[102];(e)单透镜型偏振分光超构表面[103];(f)3块偏振分光超构透镜拼成的超构表面[104];(g)6种基本偏振态入射,超构表面的偏振分束聚焦效果实验与仿真的比较[104]
Figure 2. All dielectric metasurface based on geometric phase and propagation phase theory. (a) The metasurface is composed of elliptical amorphous silicon posts[101]; (b) polarization splitting metagrating, polarization splitting metalens, polarization-dependent holographic metasurface and polarization-dependent special optical field metasurface[101]; (c) polarization splitting metalens array[102]; (d) targeted polarization mask (left), the fabricated mask imaged using conventional polarimetry (middle), the same mask imaged using the metasurface (right)[102]; (e) polarization splitting metalens[103]; (f) planar metasurface consisting of three polarization splitting metalenses[104]; (g) the comparison of measured and simulated results of the metasurface focusing effect with the incidence of six basic polarization states[104]
图 3 基于矩阵傅立叶光学的光栅型偏振分光超构表面的原理、成像及系统。(a)光栅型偏振分光超构表面原理图[105];(b)搭配后置透镜和探测器可实现偏振成像[105];(c)4种非常规偏振态[105];(d)集成该超构表面的全斯托克斯偏振成像系统[105];(e)偏振测定图像[105];(f)偏振角图像[105];(g)全斯托克斯偏振测定模块[106]
Figure 3. Theory, imaging and system of a polarimetric metagrating based on matrix Fourier optics. (a) Theoretical model of a polarimetric metagrating[105]; (b) combination with a rear lens and a detector can achieve polarization imaging[105]; (c) four kinds of unconventional polarization states[105]; (d) full Stokes polarization imaging system integrated with the metagrating[105]; (e) polarimetric measurement image[105]; (f) angle of polarization image[105]; (g) full Stokes polarimetric module[106]
图 4 宽带消色差偏振分光超构表面。(a)耦合矩形电介质波导结构[110];(b)聚焦相位可分为基础相位和色散相位[111];(c)特殊设计的微纳金属结构单元存在数个谐振峰[111];(d)实验和仿真得到的2种偏振态下超构透镜焦长随波长的变化情况[113];(e)2种线偏振光入射时测得的散射场强度分布图[113];(f)近红外波段消色差多维探测超构透镜阵列[115];(g)XLP和LCP入射时测得的散射场强度分布图[115]
Figure 4. Broadband achromatic polarization splitting metasurfaces. (a) Coupled rectangular dielectric resonators[110]; (b) the focusing phase can be divided into the basic phase and the chromatic phase[111]; (c) there are several resonant peaks in the specially designed micro-nano metallic structure element[111]; (d) measured and simulated focal lengths as a function of wavelength for both polarizations[113]; (e) measured intensity profiles along with longitudinal directions at various incident wavelengths. The left panel is for x-polarized incidence and the right panel is for y-polarization incidence[113]; (f) near-infrared achromatic metalens array for multiparameter detection[115]; (g) measured intensity profiles under incidence of XLP and LCP light[115]
图 5 基于机器学习的微纳光子学器件设计。(a)可见光波段消色差多阶衍射透镜[119];(b)二分搜索算法流程[119];(c)逆向设计神经网络[124];(d)透镜型偏振分光超构表面[124];(e)端到端的统计机器学习框架[126];(f)多频率点透镜型偏振分光超构表面的仿真和实验效果[126]
Figure 5. Metasurface design based on machine learning. (a) Visible chromatic multilevel diffractive lens[119]; (b) flow chart of the direct binary search algorithm[119]; (c) inverse design network[124]; (d) polarization splitting metalens[124]; (e) end-to-end statistical machine learning framework[126]; (f) simulated and measured results of four-frequency polarization splitting metalenses[126]
图 6 焦距动态可调超构透镜。(a)基于柔性基底的动态可调超构透镜[136];(b)纵向间距可调的超构透镜组,原理示意图(左)、器件的光学显微镜图像(右上)、两超构透镜键合示意图(右下)[138];(c)液晶浸润实现焦点动态调制[141];(d)基于超低损耗相变材料Sb2S3的近红外热调控变焦超构透镜[143];(e)环向拉伸实现焦距动态可调偏振分光超构透镜;(f)器件焦距和能量透射率随单元周期的变化曲线;(g)不同单元周期下电场能量随纵轴方向的变化曲线
Figure 6. Metalens with dynamically tunable focal length. (a) Dynamically tunable metasurface based on a flexible substrate[136]; (b) a group of metasurfaces with adjustable longitudinal spacing, schematic diagram (left), optical microscopy image of device (top right), illustration of the bonding of two metasurfaces (bottom right)[138]; (c) dynamically tuning the focal length through liquid crystal infiltration[141]; (d) near-infrared thermally modulated varifocal metalens based on a low-losses phase change material Sb2S3[143]; (e) polarization splitting metalens with a dynamically tunable focal length by circumferential stretching; (f) the variation curves of focal length and transmission with unit period; (g) the variation curves of the electric field intensity with the longitudinal direction at different unit periods
表 1 本节详细阐述的超构表面特性比较
Table 1. Features comparison of elaborated metasurfaces in this section
Work by Operation
BandwidthEnergy
EfficiencyWorking
ModeMaterials
InvolvedFabrication
MethodFunctional
TypePors et al.
(2015)[84]700-1000 nm ≈50% reflection Au,SiO2 EBL + lift-
off + EBDPSMG Shaltout et al. (2015)[85] 1.2-1.7 μm <40% reflection Au,Al2O3 EBL + lift-
off +EBDPSMG Boroviks et al. (2017)[86] 750-950 nm ≈65% reflection Au,SiO2 EBL + lift-
off + EBDPSML Khorasaninejad et al. (2016)[92] visible <45% transmission TiO2,SiO2 EBL + lift-
off + ALDPSML Yang et al. (2018)[93] 1550 nm ≈28% transmission Si,SiO2 EBL + ICP etching PFMLA Arbabi et al. (2018)[101] 850 nm 60%-65% transmission α-Si,SiO2 EBL + lift-
off + RIEPSMLA Yan et al.
(2019)[103]10.6 μm ≈53% transmission Si LDW + ICP etching PSML Rubin et al. (2019)[105] visible >50% transmission TiO2,SiO2 EBL + lift-
off + ALDPSMG Ren et al.
(2022)[104]530 nm ≈54% transmission TiO2,SiO2 EBL + lift-
off + ALDPSML Abbreviations: Electron Beam Lithography, EBL; Electron Beam Deposition, EBD; Atomic Layer Deposition, ALD; Inductively Coupling Plasma, ICP; Reactive Ion etching, RIE; Laser Direct Writing, LDW; Polarization splitting metagrating, PSMG; Polarization splitting metalens, PSML; Polarization filtering metalens array, PFMLA; Polarization splitting metalens array, PSMLA. -
[1] TORRANCE K E, SPARROW E M. Theory for off-specular reflection from roughened surfaces[J]. Journal of the Optical Society of America, 1967, 57(9): 1105-1114. doi: 10.1364/JOSA.57.001105 [2] PRIEST R G, MEIER S R. Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces[J]. Optical Engineering, 2002, 41(5): 988-993. doi: 10.1117/1.1467360 [3] GURTON K P, DAHMANI R. Effect of surface roughness and complex indices of refraction on polarized thermal emission[J]. Applied Optics, 2005, 44(26): 5361-5367. doi: 10.1364/AO.44.005361 [4] HYDE IV M W, SCHMIDT J D, HAVRILLA M J. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces[J]. Optics Express, 2009, 17(24): 22138-22153. doi: 10.1364/OE.17.022138 [5] 杨志勇, 陆高翔, 张志伟, 等. 热辐射环境下目标红外偏振特性分析[J]. 光学学报,2022,42(2):0220001. doi: 10.3788/AOS202242.0220001YANG ZH Y, LU G X, ZHANG ZH W, et al. Analysis of infrared polarization characteristics of target in thermal radiation environment[J]. Acta Optica Sinica, 2022, 42(2): 0220001. (in Chinese) doi: 10.3788/AOS202242.0220001 [6] YANG B, YAN CH X, ZHANG J Q, et al. Refractive index and surface roughness estimation using passive multispectral and multiangular polarimetric measurements[J]. Optics Communications, 2016, 381: 336-345. doi: 10.1016/j.optcom.2016.07.042 [7] ZHANG Y, ZHANG Y, ZHAO H J, et al. Improved atmospheric effects elimination method for pBRDF models of painted surfaces[J]. Optics Express, 2017, 25(14): 16458-16475. doi: 10.1364/OE.25.016458 [8] ZHANG Y, XUAN J B, ZHAO H J, et al. Roughness estimation of inhomogeneous paint based on polarization imaging detection[J]. Proceedings of SPIE, 2018, 10849: 1084910. [9] ZHAN H Y, VOELZ D G, KUPINSKI M. Parameter-based imaging from passive multispectral polarimetric measurements[J]. Optics Express, 2019, 27(20): 28832-28843. doi: 10.1364/OE.27.028832 [10] GURTON K, FELTON M, MACK R, et al. MidIR and LWIR polarimetric sensor comparison study[J]. Proceedings of SPIE, 2010, 7672: 767205. doi: 10.1117/12.850341 [11] GURTON K P, FELTON M. Remote detection of buried land-mines and IEDs using LWIR polarimetric imaging[J]. Optics Express, 2012, 20(20): 22344-22359. doi: 10.1364/OE.20.022344 [12] ROWE M P, PUGH E N, TYO J S, et al. Polarization-difference imaging: a biologically inspired technique for observation through scattering media[J]. Optics Letters, 1995, 20(6): 608-610. doi: 10.1364/OL.20.000608 [13] SCHECHNER Y Y, KARPEL N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE Journal of Oceanic Engineering, 2005, 30(3): 570-587. doi: 10.1109/JOE.2005.850871 [14] TREIBITZ T, SCHECHNER Y Y. Active polarization descattering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(3): 385-399. doi: 10.1109/TPAMI.2008.85 [15] HAN P L, LIU F, WEI Y, et al. Optical correlation assists to enhance underwater polarization imaging performance[J]. Optics and Lasers in Engineering, 2020, 134: 106256. doi: 10.1016/j.optlaseng.2020.106256 [16] LIU Y, YORK T, AKERS W J, et al. Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor[J]. Journal of Biomedical Optics, 2012, 17(11): 116001. doi: 10.1117/1.JBO.17.11.116001 [17] HE CH, HE H H, CHANG J T, et al. Polarisation optics for biomedical and clinical applications: a review[J]. Light:Science &Applications, 2021, 10(1): 194. [18] ANDRE Y, LAHERRERE J M, BRET-DIBAT T, et al. Instrumental concept and performances of the POLDER instrument[J]. Proceedings of SPIE, 1995, 2572: 79-90. doi: 10.1117/12.216932 [19] CHENAULT D B, VADEN J P, MITCHELL D A, et al. Infrared polarimetric sensing of oil on water[J]. Proceedings of SPIE, 2016, 9999: 99990D. [20] YUFFA A J, GURTON K P, VIDEEN G. Three-dimensional facial recognition using passive long-wavelength infrared polarimetric imaging[J]. Applied Optics, 2014, 53(36): 8514-8521. doi: 10.1364/AO.53.008514 [21] RIGGAN B S, SHORT N J, HU SH W, et al. . Estimation of visible spectrum faces from polarimetric thermal faces[C]. 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS), IEEE, 2016: 1-7. [22] 张景华, 张焱, 石志广, 等. 基于法向量估计的透明物体表面反射光分离[J]. 光学学报,2021,41(15):1526001. doi: 10.3788/AOS202141.1526001ZHANG J H, ZHANG Y, SHI ZH G, et al. Reflected light separation on transparent object surface based on normal vector estimation[J]. Acta Optica Sinica, 2021, 41(15): 1526001. (in Chinese) doi: 10.3788/AOS202141.1526001 [23] LI N, ZHAO Y Q, PAN Q, et al. Removal of reflections in LWIR image with polarization characteristics[J]. Optics Express, 2018, 26(13): 16488-16504. doi: 10.1364/OE.26.016488 [24] KONG N, TAI Y W, SHIN J S. A physically-based approach to reflection separation: from physical modeling to constrained optimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(2): 209-221. doi: 10.1109/TPAMI.2013.45 [25] NARASIMHAN S G, NAYAR S K. Vision and the atmosphere[J]. International Journal of Computer Vision, 2002, 48(3): 233-254. doi: 10.1023/A:1016328200723 [26] SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polarization-based vision through haze[J]. Applied Optics, 2003, 42(3): 511-525. doi: 10.1364/AO.42.000511 [27] LI N, ZHAO Y Q, PAN Q, et al. Illumination-invariant road detection and tracking using LWIR polarization characteristics[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 180: 357-369. doi: 10.1016/j.isprsjprs.2021.08.022 [28] LI N, ZHAO Y Q, WU R Y, et al. Polarization-guided road detection network for LWIR division-of-focal-plane camera[J]. Optics Letters, 2021, 46(22): 5679-5682. doi: 10.1364/OL.441817 [29] YAROSLAVSKY A N, FENG X, YU S H, et al. Dual-wavelength optical polarization imaging for detecting skin cancer margins[J]. Journal of Investigative Dermatology, 2020, 140(10): 1994-2000.e1. doi: 10.1016/j.jid.2020.03.947 [30] MAIGNAN F, BRÉON F M, FÉDÈLE E, et al. Polarized reflectances of natural surfaces: spaceborne measurements and analytical modeling[J]. Remote Sensing of Environment, 2009, 113(12): 2642-2650. doi: 10.1016/j.rse.2009.07.022 [31] RIZKI AKBAR P, TETUKO S S J, KUZE H. A novel circularly polarized synthetic aperture radar (CP-SAR) system onboard a spaceborne platform[J]. International Journal of Remote Sensing, 2010, 31(4): 1053-1060. doi: 10.1080/01431160903156528 [32] CHUN C S L, FLEMING D L, HARVEY W A, et al. Polarization-sensitive thermal imaging sensor[J]. Proceedings of SPIE, 1995, 2552: 438-444. doi: 10.1117/12.218293 [33] PEZZANITI J L, CHENAULT D, GURTON K, et al. Detection of obscured targets with IR polarimetric imaging[J]. Proceedings of SPIE, 2014, 9072: 90721D. [34] TYO J S, GOLDSTEIN D L, CHENAULT D B, et al. Review of passive imaging polarimetry for remote sensing applications[J]. Applied Optics, 2006, 45(22): 5453-5469. doi: 10.1364/AO.45.005453 [35] 周奎, 单政, 张倩, 等. MEMS法布里-珀罗滤波芯片及其光谱探测应用研究进展[J]. 光学学报,2022,42(8):0800001. doi: 10.3788/AOS202242.0800001ZHOU K, SHAN ZH, ZHANG Q, et al. Research progresses of MEMS Fabry-Perot filtering chips and their applications for spectral detection[J]. Acta Optica Sinica, 2022, 42(8): 0800001. (in Chinese) doi: 10.3788/AOS202242.0800001 [36] GARLICK G F J, STEIGMANN G A, LAMB W E. Differential optical polarization detectors: US, 3992571[P]. 1976-11-16. [37] FARLOW C A, CHENAULT D B, PEZZANITI J L, et al. Imaging polarimeter development and applications[J]. Proceedings of SPIE, 2002, 4481: 118-125. doi: 10.1117/12.452880 [38] DIRIX Y, TERVOORT T A, BASTIAANSEN C. Optical properties of oriented polymer/dye polarizers[J]. Macromolecules, 1995, 28(2): 486-491. doi: 10.1021/ma00106a011 [39] WOLFF L B, MANCINI T A, POULIQUEN P, et al. Liquid crystal polarization camera[J]. IEEE Transactions on Robotics and Automation, 1997, 13(2): 195-203. doi: 10.1109/70.563642 [40] BROER D J, VAN DER V J. Method of manufacturing a polarization filter and a polarization filter so obtained: US, 5024850[P]. 1991-06-18. [41] ZHAO X J, BERMAK A, BOUSSAID F, et al. Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum[J]. Optics Express, 2010, 18(17): 17776-17787. doi: 10.1364/OE.18.017776 [42] MYHRE G, HSU W L, PEINADO A, et al. Liquid crystal polymer full-stokes division of focal plane polarimeter[J]. Optics Express, 2012, 20(25): 27393-27409. doi: 10.1364/OE.20.027393 [43] 张士元, 孙子珺, 穆全全, 等. 用于偏振成像的液晶微偏振阵列研究进展[J]. 液晶与显示,2022,37(3):292-309. doi: 10.37188/CJLCD.2021-0330ZHANG SH Y, SUN Z J, MU Q Q, et al. Review on liquid crystal micropolarizer array for polarization imaging[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(3): 292-309. (in Chinese) doi: 10.37188/CJLCD.2021-0330 [44] 王骁乾, 沈冬, 郑致刚, 等. 液晶光控取向技术进展[J]. 液晶与显示,2015,30(5):737-751. doi: 10.3788/YJYXS20153005.0737WANG X Q, SHEN D, ZHENG ZH G, et al. Review on liquid crystal photoalignment technologies[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(5): 737-751. (in Chinese) doi: 10.3788/YJYXS20153005.0737 [45] ZHAO J C, QIU M, YU X CH, et al. Defining deep-subwavelength-resolution, wide-color-gamut, and large-viewing-angle flexible subtractive colors with an ultrathin asymmetric Fabry-Perot lossy cavity[J]. Advanced Optical Materials, 2019, 7(23): 1900646. doi: 10.1002/adom.201900646 [46] BOKOR N, SHECHTER R, DAVIDSON N, et al. Achromatic phase retarder by slanted illumination of a dielectric grating with period comparable with the wavelength[J]. Applied Optics, 2001, 40(13): 2076-2080. doi: 10.1364/AO.40.002076 [47] 付秀华, 林晓敏, 张功, 等. 红外宽波段亚波长金属线栅偏振元件的研制[J]. 中国金宝搏188软件怎么用 ,2021,48(9):0903002. doi: 10.3788/CJL202148.0903002FU X H, LIN X M, ZHANG G, et al. Development of infrared wide band polarizing elements with subwavelength metal wire grids[J]. Chinese Journal of Lasers, 2021, 48(9): 0903002. (in Chinese) doi: 10.3788/CJL202148.0903002 [48] YEH P. A new optical model for wire grid polarizers[J]. Optics Communications, 1978, 26(3): 289-292. doi: 10.1016/0030-4018(78)90203-1 [49] LALANNE P, LEMERCIER-LALANNE D. On the effective medium theory of subwavelength periodic structures[J]. Journal of Modern Optics, 1996, 43(10): 2063-2085. doi: 10.1080/09500349608232871 [50] TYAN R C, SALVEKAR A A, CHOU H P, et al. Design, fabrication, and characterization of form-birefringent multilayer polarizing beam splitter[J]. Journal of the Optical Society of America A, 1997, 14(7): 1627-1636. doi: 10.1364/JOSAA.14.001627 [51] AHN S W, LEE K D, KIM J S, et al. Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography[J]. Nanotechnology, 2005, 16(9): 1874-1877. doi: 10.1088/0957-4484/16/9/076 [52] YAMADA I, NISHII J, SAITO M. Incident angle and temperature dependence of WSi wire-grid polarizer[J]. Infrared Physics &Technology, 2014, 63: 92-96. [53] XIA J, YUAN ZH H, WANG CH, et al. Design and fabrication of a linear polarizer in the 8-12μm infrared region with multilayer nanogratings[J]. OSA Continuum, 2019, 2(5): 1683-1692. doi: 10.1364/OSAC.2.001683 [54] ZHANG ZH G, DONG F L, CHENG T, et al. Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry[J]. Review of Scientific Instruments, 2014, 85(10): 105002. doi: 10.1063/1.4897270 [55] SUN D, FENG B, YANG B, et al. Design and fabrication of an InGaAs focal plane array integrated with linear-array polarization grating[J]. Optics Letters, 2020, 45(6): 1559-1562. doi: 10.1364/OL.376110 [56] GRUEV V, PERKINS R, YORK T. CCD polarization imaging sensor with aluminum nanowire optical filters[J]. Optics Express, 2010, 18(18): 19087-19094. doi: 10.1364/OE.18.019087 [57] GRUEV V. Fabrication of a dual-layer aluminum nanowires polarization filter array[J]. Optics Express, 2011, 19(24): 24361-24369. doi: 10.1364/OE.19.024361 [58] MA X, DONG F L, ZHANG ZH G, et al. Pixelated-polarization-camera-based polarimetry system for wide real-time optical rotation measurement[J]. Sensors and Actuators B:Chemical, 2019, 283: 857-864. doi: 10.1016/j.snb.2018.12.098 [59] 曹暾, 刘宽, 李阳, 等. 可调谐光学超构材料及其应用[J]. 中国光学,2021,14(4):968-985. doi: 10.37188/CO.2021-0080CAO T, LIU K, LI Y, et al. Tunable optical metamaterials and their applications[J]. Chinese Optics, 2021, 14(4): 968-985. (in Chinese) doi: 10.37188/CO.2021-0080 [60] SHELBY R A, SMITH D R, SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79. doi: 10.1126/science.1058847 [61] VESELAGO V G. The electrodynamics of substances with simultaneously negative values of ε and μ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514. doi: 10.1070/PU1968v010n04ABEH003699 [62] 田小永, 尹丽仙, 李涤尘. 三维超材料制造技术现状与趋势[J]. 光电工程,2017,44(1):69-76.TIAN X Y, YIN L X, LI D CH. Current situation and trend of fabrication technologies for three-dimensional metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 69-76. (in Chinese) [63] 余晓畅, 许雅晴, 蔡佳辰, 等. 可调微纳滤波结构的研究进展[J]. 中国光学,2021,14(5):1069-1088. doi: 10.37188/CO.2021-0044YU X CH, XU Y Q, CAI J CH, et al. Progress of tunable micro-nano filtering structures[J]. Chinese Optics, 2021, 14(5): 1069-1088. (in Chinese) doi: 10.37188/CO.2021-0044 [64] 付娆, 李子乐, 郑国兴. 超构表面的振幅调控及其功能器件研究进展[J]. 中国光学,2021,14(4):886-899. doi: 10.37188/CO.2021-0017FU R, LI Z L, ZHENG G X. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899. (in Chinese) doi: 10.37188/CO.2021-0017 [65] YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713 [66] YU N F, AIETA F, GENEVET P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12): 6328-6333. doi: 10.1021/nl303445u [67] DENG Y D, CAI Z R, DING Y T, et al. Recent progress in metasurface-enabled optical waveplates[J]. Nanophotonics, 2022, 11(10): 2219-2244. doi: 10.1515/nanoph-2022-0030 [68] JIANG ZH H, LIN L, MA D, et al. Broadband and wide field-of-view plasmonic metasurface-enabled waveplates[J]. Scientific Reports, 2014, 4: 7511. doi: 10.1038/srep07511 [69] 刘东明, 吕婷婷, 刘强, 等. 可开关的多功能超构表面波片特性研究[J]. 中国光学,2021,14(4):1029-1037. doi: 10.37188/CO.2021-0100LIU D M, LV T T, LIU Q, et al. Performance study on switchable and multifunctional metasurface wave plate[J]. Chinese Optics, 2021, 14(4): 1029-1037. (in Chinese) doi: 10.37188/CO.2021-0100 [70] LI J X, WANG Y Q, CHEN CH, et al. From lingering to rift: metasurface decoupling for near- and far-field functionalization[J]. Advanced Materials, 2021, 33(16): 2007507. doi: 10.1002/adma.202007507 [71] WU T, ZHANG X Q, XU Q, et al. Dielectric metasurfaces for complete control of phase, amplitude, and polarization[J]. Advanced Optical Materials, 2022, 10(1): 2101223. doi: 10.1002/adom.202101223 [72] KARIMI E, SCHULZ S A, DE LEON I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light:Science &Applications, 2014, 3(5): e167. [73] AHMED H, KIM H, ZHANG Y B, et al. Optical metasurfaces for generating and manipulating optical vortex beams[J]. Nanophotonics, 2022, 11(5): 941-956. doi: 10.1515/nanoph-2021-0746 [74] 于洋, 仲帆, 江西, 等. 基于旋转超表面的相干自旋霍尔效应的可调光束[J]. 中国光学,2021,14(4):927-934. doi: 10.37188/CO.2021-0097YU Y, ZHONG F, JIANG X, et al. Dynamical optical beam produced in rotational metasurface based on coherent spin hall effect[J]. Chinese Optics, 2021, 14(4): 927-934. (in Chinese) doi: 10.37188/CO.2021-0097 [75] 倪一博, 闻顺, 沈子程, 等. 基于超构表面的多维光场感知[J]. 中国金宝搏188软件怎么用 ,2021,48(19):1918003. doi: 10.3788/CJL202148.1918003NI Y B, WEN SH, SHEN Z CH, et al. Multidimensional light field sensing based on metasurfaces[J]. Chinese Journal of Lasers, 2021, 48(19): 1918003. (in Chinese) doi: 10.3788/CJL202148.1918003 [76] KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009. doi: 10.1126/science.1232009 [77] 麦尔·斯蒂芬. 等离激元学: 基础与应用[M]. 张彤, 王琦龙, 张晓阳, 等, 译. 南京: 东南大学出版社, 2014: 3-13.MAIER S A. Plasmonics: Fundamentals and Applications[M]. ZHANG T, WANG Q L, ZHANG X Y, et al. , trans. Nanjing: Southeast University Press, 2014: 3-13. (in Chinese) [78] AIETA F, GENEVET P, KATS M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936. doi: 10.1021/nl302516v [79] NI X J, ISHII S, KILDISHEV A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light:Science &Applications, 2013, 2(4): e72. [80] SUN SH L, YANG K Y, WANG C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229. doi: 10.1021/nl3032668 [81] DING F, YANG Y Q, DESHPANDE R A, et al. A review of gap-surface plasmon metasurfaces: fundamentals and applications[J]. Nanophotonics, 2018, 7(6): 1129-1156. doi: 10.1515/nanoph-2017-0125 [82] KIM H C, CHENG X. SERS-active substrate based on gap surface plasmon polaritons[J]. Optics Express, 2009, 17(20): 17234-17241. doi: 10.1364/OE.17.017234 [83] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应[J]. 物理学报,2021,70(18):187303. doi: 10.7498/aps.70.20210290GUO Q Q, CHEN Y H. Enhanced nonlinear optical effects based on strong coupling between epsilon-near-zero mode and gap surface plasmons[J]. Acta Physica Sinica, 2021, 70(18): 187303. (in Chinese) doi: 10.7498/aps.70.20210290 [84] PORS A, NIELSEN M G, BOZHEVOLNYI S I. Plasmonic metagratings for simultaneous determination of Stokes parameters[J]. Optica, 2015, 2(8): 716-723. doi: 10.1364/OPTICA.2.000716 [85] SHALTOUT A, LIU J J, KILDISHEV A, et al. Photonic spin hall effect in gap–plasmon metasurfaces for on-chip chiroptical spectroscopy[J]. Optica, 2015, 2(10): 860-863. doi: 10.1364/OPTICA.2.000860 [86] BOROVIKS S, DESHPANDE R A, MORTENSEN N A, et al. Multifunctional metamirror: polarization splitting and focusing[J]. ACS Photonics, 2018, 5(5): 1648-1653. doi: 10.1021/acsphotonics.7b01091 [87] DING F, CHEN Y T, BOZHEVOLNYI S I. Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing, and beam splitting[J]. Photonics Research, 2020, 8(5): 707-714. doi: 10.1364/PRJ.386655 [88] ZHANG J, ELKABBASHIM, WEIR, et al. Plasmon metasurfaces with 42.39% transmission efficiency in visible[J]. Light:Science &Applications, 2019, 8(1): 53. [89] WEI SH W, YANG ZH Y, ZHAO M. Design of ultracompact polarimeters based on dielectric metasurfaces[J]. Optics Letters, 2017, 42(8): 1580-1583. doi: 10.1364/OL.42.001580 [90] LIN D M, FAN P Y, HASMAN E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302. doi: 10.1126/science.1253213 [91] HU Y Q, WANG X D, LUO X H, et al. All-dielectric metasurfaces for polarization manipulation: principles and emerging applications[J]. Nanophotonics, 2020, 9(12): 3755-3780. doi: 10.1515/nanoph-2020-0220 [92] KHORASANINEJAD M, CHEN W T, ZHU A Y, et al. Multispectral chiral imaging with a metalens[J]. Nano Letters, 2016, 16(7): 4595-4600. doi: 10.1021/acs.nanolett.6b01897 [93] YANG ZH Y, WANG ZH K, WANG Y X, et al. Generalized Hartmann-Shack array of dielectric metalens sub-arrays for polarimetric beam profiling[J]. Nature Communications, 2018, 9(1): 4607. doi: 10.1038/s41467-018-07056-6 [94] 刘永健, 张飞, 谢婷, 等. 基于伴随仿真的偏振复用超构透镜[J]. 中国光学,2021,14(4):754-763. doi: 10.37188/CO.2021-0035LIU Y J, ZHANG F, XIE T, et al. Polarization-multiplexed metalens enabled by adjoint optimization[J]. Chinese Optics, 2021, 14(4): 754-763. (in Chinese) doi: 10.37188/CO.2021-0035 [95] KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi: 10.1126/science.aaf6644 [96] ZHAO J C, YU X CH, ZHOU K, et al. Polarization-sensitive subtractive structural color used for information encoding and dynamic display[J]. Optics and Lasers in Engineering, 2021, 138: 106421. doi: 10.1016/j.optlaseng.2020.106421 [97] 范智斌, 陈泽茗, 周鑫, 等. 氮化硅光子器件与应用研究进展[J]. 中国光学,2021,14(4):998-1018. doi: 10.37188/CO.2021-0093FAN ZH B, CHEN Z M, ZHOU X, et al. Recent advances in silicon nitride-based photonic devices and applications[J]. Chinese Optics, 2021, 14(4): 998-1018. (in Chinese) doi: 10.37188/CO.2021-0093 [98] PANCHARATNAM S. Generalized theory of interference and its applications[J]. Proceedings of the Indian Academy of Sciences - Section A, 1956, 44(6): 398-417. doi: 10.1007/BF03046095 [99] BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1984, 392(1802): 45-57. [100] HSIAO H H, CHU C H, TSAI D P. Fundamentals and applications of metasurfaces[J]. Small Methods, 2017, 1(4): 1600064. doi: 10.1002/smtd.201600064 [101] ARBABI A, HORIE Y, BAGHERI M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937-943. doi: 10.1038/nnano.2015.186 [102] ARBABI E, KAMALI S M, ARBABI A, et al. Full-Stokes imaging polarimetry using dielectric metasurfaces[J]. ACS Photonics, 2018, 5(8): 3132-3140. doi: 10.1021/acsphotonics.8b00362 [103] YAN CH, LI X, PU M B, et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces[J]. Applied Physics Letters, 2019, 114(16): 161904. doi: 10.1063/1.5091475 [104] REN Y Z, GUO SH H, ZHU W Q, et al. Full-Stokes polarimetry for visible light enabled by an all-dielectric metasurface[J]. Advanced Photonics Research, 2022, 3(7): 2100373. doi: 10.1002/adpr.202100373 [105] RUBIN N A, D’AVERSA G, CHEVALIER P, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 2019, 365(6448): eaax1839. doi: 10.1126/science.aax1839 [106] RUBIN N A, CHEVALIER P, JUHL M, et al. Imaging polarimetry through metasurface polarization gratings[J]. Optics Express, 2022, 30(6): 9389-9412. doi: 10.1364/OE.450941 [107] CHEN W T, ZHU A Y, SANJEEV V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226. doi: 10.1038/s41565-017-0034-6 [108] 李效欣. 基于超表面的宽带消色差偏振成像研究[D]. 哈尔滨: 哈尔滨工业大学, 2021: 7-10.LI X X. Broadband achromatic polarization imaging based on metasurface[D]. Harbin: Harbin Institute of Technology, 2021: 7-10. (in Chinese) [109] KHORASANINEJAD M, SHI Z, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. doi: 10.1021/acs.nanolett.6b05137 [110] AIETA F, KATS M A, GENEVET P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345. doi: 10.1126/science.aaa2494 [111] WANG SH M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187. doi: 10.1038/s41467-017-00166-7 [112] CHENG Q Q, MA M L, YU D, et al. Broadband achromatic metalens in terahertz regime[J]. Science Bulletin, 2019, 64(20): 1525-1531. doi: 10.1016/j.scib.2019.08.004 [113] OU K, YU F L, LI G H, et al. Mid-infrared polarization-controlled broadband achromatic metadevice[J]. Science Advances, 2020, 6(37): eabc0711. doi: 10.1126/sciadv.abc0711 [114] 欧凯. 人工微结构超表面的光场调控物理及其应用[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2021: 47-60.OU K. Manipulation the light based on artificial microstructure metasurfaces and its applications[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics, Chinese Academy of Sciences), 2021: 47-60. (in Chinese) [115] FENG X, WANG Y X, WEI Y X, et al. Optical multiparameter detection system based on a broadband achromatic metalens array[J]. Advanced Optical Materials, 2021, 9(19): 2100772. doi: 10.1002/adom.202100772 [116] 肖行健, 祝世宁, 李涛. 宽带消色差平面透镜的设计与参量分析[J]. 红外与金宝搏188软件怎么用 工程,2020,49(9):20201032. doi: 10.3788/IRLA20201032XIAO X J, ZHU SH N, LI T. Design and parametric analysis of the broadband achromatic flat lens[J]. Infrared and Laser Engineering, 2020, 49(9): 20201032. (in Chinese) doi: 10.3788/IRLA20201032 [117] CHEN J, HU SH SH, ZHU SH N, et al. Metamaterials: from fundamental physics to intelligent design[J]. Interdisciplinary Materials, 2023, 3(1): 5-29. [118] WIECHA P R, ARBOUET A, GIRARD C, et al. Deep learning in nano-photonics: inverse design and beyond[J]. Photonics Research, 2021, 9(5): B182-B200. doi: 10.1364/PRJ.415960 [119] WANG P, MOHAMMAD N, MENON R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing[J]. Scientific Reports, 2016, 6: 21545. doi: 10.1038/srep21545 [120] 盛小航, 周韶东, 席科磊, 等. 基于相变材料的多阶折射率薄膜平板透镜[J]. 光学学报,2022,42(19):1916002. doi: 10.3788/AOS202242.1916002SHENG X H, ZHOU SH D, XI K L, et al. Multi-order refractive index thin-film flat lens based on phase change materials[J]. Acta Optica Sinica, 2022, 42(19): 1916002. (in Chinese) doi: 10.3788/AOS202242.1916002 [121] MEEM M, BANERJI S, MAJUMDER A, et al. Broadband lightweight flat lenses for long-wave infrared imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(43): 21375-21378. doi: 10.1073/pnas.1908447116 [122] BANERJI S, MEEM M, MAJUMDER A, et al. Imaging with flat optics: metalenses or diffractive lenses?[J]. Optica, 2019, 6(6): 805-810. doi: 10.1364/OPTICA.6.000805 [123] WANG F L, GENG G ZH, WANG X Q, et al. Visible achromatic metalens design based on artificial neural network[J]. Advanced Optical Materials, 2022, 10(3): 2101842. doi: 10.1002/adom.202101842 [124] GU Y J, HAO R, LI E P. Independent bifocal metalens design based on deep learning algebra[J]. IEEE Photonics Technology Letters, 2021, 33(8): 403-406. doi: 10.1109/LPT.2021.3066595 [125] 徐东. 基于深度学习的相位调控型超构表面器件设计[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2021: 5-9.XU D. Design of phase-modulating metasurface device based on deep learning[D]. Chengdu: University of Chinese Academy of Sciences (The Institute of Optics and Electronics, the Chinese Academy of Sciences), 2021: 5-9. (in Chinese) [126] MA W, XU Y H, XIONG B, et al. Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning[J]. Advanced Material, 2022, 34(16): 2110022. doi: 10.1002/adma.202110022 [127] AN X P, CAO Y, WEI Y X, et al. Broadband achromatic metalens design based on deep neural networks[J]. Optics Letters, 2021, 46(16): 3881-3884. doi: 10.1364/OL.427221 [128] ZHU R CH, QIU T SH, WANG J F, et al. Phase-to-pattern inverse design paradigm for fast realization of functional metasurfaces via transfer learning[J]. Nature Communications, 2021, 12(1): 2974. doi: 10.1038/s41467-021-23087-y [129] LIPTON Z C. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery[J]. Queue, 2018, 16(3): 31-57. doi: 10.1145/3236386.3241340 [130] SHE A L, ZHANG SH Y, SHIAN S, et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2): eaap9957. doi: 10.1126/sciadv.aap9957 [131] SHAPIRA C, YARIV I, ANKRI R, et al. Effect of optical magnification on the detection of the reduced scattering coefficient in the blue regime: theory and experiments[J]. Optics Express, 2021, 29(14): 22228-22239. doi: 10.1364/OE.431929 [132] LIM T Y, PARK S C. Achromatic and athermal lens design by redistributing the element powers on an athermal glass map[J]. Optics Express, 2016, 24(16): 18049-18058. doi: 10.1364/OE.24.018049 [133] 解娜, 崔庆丰. 基于权重分组的可见光光学系统无热化设计[J]. 光学学报,2018,38(12):1222001. doi: 10.3788/AOS201838.1222001XIE N, CUI Q F. Athermalization design of visible light optical system based on grouping by weight[J]. Acta Optica Sinica, 2018, 38(12): 1222001. (in Chinese) doi: 10.3788/AOS201838.1222001 [134] ASHTON A. Zoom lens systems[J]. Proceedings of SPIE, 1979, 163: 92-98. doi: 10.1117/12.956916 [135] PARR-BURMAN P, GARDAM A. The development of a compact I. R. zoom telescope[J]. Proceedings of SPIE, 1986, 590: 11-17. doi: 10.1117/12.951960 [136] EE H S, AGARWAL R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818-2823. doi: 10.1021/acs.nanolett.6b00618 [137] SONG SH CH, MA X L, PU M B, et al. Actively tunable structural color rendering with tensile substrate[J]. Advanced Optical Materials, 2017, 5(9): 1600829. doi: 10.1002/adom.201600829 [138] ARBABI E, ARBABI A, KAMALI S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9(1): 812. doi: 10.1038/s41467-018-03155-6 [139] CUI T, BAI B F, SUN H B. Tunable metasurfaces based on active materials[J]. Advanced Functional Materials, 2019, 29(10): 1806692. doi: 10.1002/adfm.201806692 [140] KIM J, SEONG J, YANG Y, et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review[J]. Advanced Photonics, 2022, 4(2): 024001. [141] LININGER A, ZHU A Y, PARK J S, et al. Optical properties of metasurfaces infiltrated with liquid crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(34): 20390-20396. doi: 10.1073/pnas.2006336117 [142] XU N, HAO Y, JIE K Q, et al. Electrically-driven zoom metalens based on dynamically controlling the phase of barium titanate (BTO) column antennas[J]. Nanomaterials, 2021, 11(3): 729. doi: 10.3390/nano11030729 [143] QIN SH, XU N, HUANG H, et al. Near-infrared thermally modulated varifocal metalens based on the phase change material Sb2S3[J]. Optics Express, 2021, 29(5): 7925-7934. doi: 10.1364/OE.420014 [144] YIN X H, STEINLE T, HUANG L L, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light:Science &Applications, 2017, 6(7): e17016. [145] YU ZH N, DESHPANDE P, WU W, et al. Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography[J]. Applied Physics Letters, 2000, 77(7): 927-929. doi: 10.1063/1.1288674 [146] KANG W D, CHU J K, ZENG X W, et al. Large-area flexible infrared nanowire grid polarizer fabricated using nanoimprint lithography[J]. Applied Optics, 2018, 57(18): 5230-5234. doi: 10.1364/AO.57.005230 [147] YAMADA I, FUKUMI K, NISHII J, et al. Infrared wire-grid polarizer with Y2O3 ceramic substrate[J]. Optics Letters, 2010, 35(18): 3111-3113. doi: 10.1364/OL.35.003111 [148] 李奥凌, 段辉高, 贾红辉, 等. 中红外波段超构透镜研究进展[J]. 光学 精密工程,2022,30(19):2313-2331.LI A L, DUAN H G, JIA H H, et al. Research progress of metalenses in mid-infrared band[J]. Optics and Precision Engineering, 2022, 30(19): 2313-2331. (in Chinese) [149] PEZZANITI J L, CHENAULT D B. A division of aperture MWIR imaging polarimeter[J]. Proceedings of SPIE, 2005, 5888: 239-250. [150] HAO J, WANG Y, ZHOU K, et al. New diagonal micropolarizer arrays designed by an improved model in Fourier domain[J]. Scientific Reports, 2021, 11(1): 5778. doi: 10.1038/s41598-021-85103-x [151] 郝佳, 王燕, 周奎, 等. 基于改进模型的新型对角微偏振阵列设计[J]. 光学 精密工程,2021,29(10):2363-2374. doi: 10.37188/OPE.2021.0173HAO J, WANG Y, ZHOU K, et al. Optimized design model of novel diagonal micropolarizer arrays[J]. Optics and Precision Engineering, 2021, 29(10): 2363-2374. (in Chinese) doi: 10.37188/OPE.2021.0173 [152] 余晓畅, 赵建村, 虞益挺. 像素级光学滤波-探测集成器件的研究进展[J]. 光学 精密工程,2019,27(5):999-1012. doi: 10.3788/OPE.20192705.0999YU X CH, ZHAO J C, YU Y T. Research progress of pixel-level integrated devices for spectral imaging[J]. Optics and Precision Engineering, 2019, 27(5): 999-1012. (in Chinese) doi: 10.3788/OPE.20192705.0999 [153] YU X CH, SU Y, SONG X K, et al. Batch fabrication and compact integration of customized multispectral filter arrays towards snapshot imaging[J]. Optics Express, 2021, 29(19): 30655-30665. doi: 10.1364/OE.439390 [154] GAN ZH F, FENG H T, CHEN L Y, et al. Spatial modulation of nanopattern dimensions by combining interference lithography and grayscale-patterned secondary exposure[J]. Light:Science &Applications, 2022, 11(1): 89. [155] HOU M M, CHEN Y, YI F. Lightweight long-wave infrared camera via a single 5-centimeter-aperture metalens[C]. 2022 Conference on Lasers and Electro-Optics (CLEO), IEEE, 2022: 1-2.