留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增强吸收光谱技术的研究进展及展望

任颐杰 颜昌翔 徐嘉蔚

任颐杰, 颜昌翔, 徐嘉蔚. 增强吸收光谱技术的研究进展及展望[J]. 188bet网站真的吗 , 2023, 16(6): 1273-1292. doi: 10.37188/CO.2022-0246
引用本文: 任颐杰, 颜昌翔, 徐嘉蔚. 增强吸收光谱技术的研究进展及展望[J]. 188bet网站真的吗 , 2023, 16(6): 1273-1292. doi: 10.37188/CO.2022-0246
REN Yi-jie, YAN Chang-xiang, XU Jia-wei. Development and prospects of enhanced absorption spectroscopy[J]. Chinese Optics, 2023, 16(6): 1273-1292. doi: 10.37188/CO.2022-0246
Citation: REN Yi-jie, YAN Chang-xiang, XU Jia-wei. Development and prospects of enhanced absorption spectroscopy[J]. Chinese Optics, 2023, 16(6): 1273-1292. doi: 10.37188/CO.2022-0246

增强吸收光谱技术的研究进展及展望

基金项目: 国家自然科学基金(No. 61805235,No. 61905241,No.61875192)
详细信息
    作者简介:

    任颐杰(1994—),男,山西长治人,博士,2018年于长春理工大学的获得学士学位,主要从事腔衰荡光谱技术、金宝搏188软件怎么用 光学系统设计方面的研究。E-mail:ryijie@126.com

    颜昌翔 (1973—),男,湖北洪湖人,博士,研究员,1995年于长春光学精密机械学院获得学士学位,1998年于浙江大学获得硕士学位,2001年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事空间光学遥感仪器的光机电一体化技术,多光谱、超光谱空间遥感成像技术、偏振探测技术、可调谐半导体金宝搏188软件怎么用 吸收光谱技术、腔衰荡光谱技术等方面的研究。E-mail:yancx0128@126.com

  • 中图分类号: O433.1

Development and prospects of enhanced absorption spectroscopy

Funds: Supported by National Natural Science Foundtion of China (No. 61805235, No. 61905241, No. 61875192)
More Information
  • 摘要:

    光程吸收光谱技术是吸收光谱技术发展中的一个重要分支,近年来基于不同光源技术、吸收腔技术、探测方式的光程吸收光谱技术大量涌现。随着对探测灵敏度和吸收光程长度需求的提高,出现了基于增强吸收原理的光程吸收光谱技术,包括:积分腔光谱(ICOS)、腔增强吸收光谱(CEAS)和腔衰荡光谱(CRDS)。增强吸收光谱技术具有高光谱分辨率、高灵敏度、快速响应、便携等优势,但至今缺乏统一的概念和明确的分类依据。本文梳理了吸收光谱技术的发展历程,明确了多光程吸收光谱技术的概念。依据吸收腔内是否发生谐振吸收,提出了基于谐振原理的吸收光谱技术这一概念,分析总结了谐振吸收光谱技术的研究现状,并对这些技术在各领域的应用进行概述。最后,对谐振吸收光谱技术中关键技术的未来发展进行了展望。

     

  • 图 1  转化吸收光谱技术原理图。(a)金宝搏188软件怎么用 诱导荧光技术;(b)共振增强多光子电离技术;(c)光声光谱技术

    Figure 1.  Schematic diagram of conversion absorption spectroscopy technology. (a) Laser induced fluorescence-(LIF); (b) resonance enhanced multiphoton ionization-(REMPI); (c) photoacoustic spectroscopy (PAS)

    图 2  光程吸收光谱技术与转化吸收光谱技术的分类图

    Figure 2.  Classification of optical path absorption spectroscopy and conversion absorption spectroscopy

    图 3  不同光程吸收光谱技术的吸收光程长度。非分散红外(NDIR)、差分吸收光谱(DOAS)、可调谐半导体金宝搏188软件怎么用 吸收光谱(TDLAS)、积分腔光谱(ICOS )、离轴积分腔输出光谱(OA-ICOS)、宽带腔增强吸收光谱(BB-CEAS)、离轴腔增强吸收光谱(OF-CEAS)、腔衰荡光谱(CRDS)

    Figure 3.  Absorption optical paths length in different optical path absorption spectroscopy technologies: non-dispersive (NDIR), differential optical absorption spectroscopy (DOAS), tunable diode laser absorption spectroscopy (TDLAS), integrated cavity output spectroscopy (ICOS), off-axis ICOS (OA-ICOS), broadband cavity-enhanced absorption spectroscopy (BB-CEAS), optical feedback CEAS (OF-CEAS), and cavity ring-down spectroscopy (CRDS)

    图 4  (a)直接吸收TDLAS技术原理图;(b)多通池TDLAS技术的实验装置图[16]

    Figure 4.  (a) Schematic diagram of direct absorption TDLAS technology; (b) experimental setup diagram of multi-channel absorption cell TDLAS technology[16]

    图 5  (a)主动(b)被动差分吸收光谱技术示意图

    Figure 5.  Schematic diagram of (a) active and (b) passive differential optical absorption spectroscopy

    图 6  (a)White腔原理图[32]。平面光学多通池的(b)三维结构图及(c)仿真模型[34]

    Figure 6.  (a) Schematic diagram of White cavity[32]. (b) Three-dimensional structure diagram of the planar optical multipass cell and (c) its simulation model[34]

    图 7  波长调制离轴积分腔光谱测量系统原理图[35]

    Figure 7.  Schematic diagram of wavelength modulation in the off-axis integral cavity output spectroscopy[35]

    图 8  宽谱腔增强吸收光谱技术装置示意图

    Figure 8.  Schematic diagram of the broadband cavity-enhanced absorption spectroscopy device

    图 9  离轴入射腔增强吸收光谱技术原理图

    Figure 9.  Schematic diagram of OA-CEAS technology

    图 10  光反馈腔增强吸收光谱技术原理图

    Figure 10.  Schematic diagram of optical feedback cavity enhanced absorption spectroscopy

    图 11  衰荡光谱技术的测量原理图

    Figure 11.  Schematic diagram of measurement principle of the decay absorption spectroscopy technique

    图 12  (a)三角腔横模匹配示意图;(b)纵模匹配示意图

    Figure 12.  (a) Schematic diagram of triangular cavity transverse mode matching; (b) schematic diagram of longitudinal mode matching

    图 13  线性腔腔衰荡光谱技术的测量原理图

    Figure 13.  Measurement diagram of linear cavity ring-down spectroscopy

    图 14  环形腔衰荡光谱技术测量原理图。(a)三角腔;(b)蝶形腔

    Figure 14.  Measurement diagrams of cavity ring-down spectroscopy with (a) triangular cavity and (b) butterfly cavity

    图 15  光纤环形腔衰荡光谱技术原理图

    Figure 15.  Schematic diagram of fiber loop ring-down spectroscopy

    图 16  三角腔中基于Hermite-Gaussian模激发特性的高精度对准方案[120]

    Figure 16.  High-precision alignment scheme based on Hermite-Gaussian mode excitation characteristics in a triangular cavity[120]

    图 17  三角腔中Hermite-Gaussian模耦合的实验装置图[121]

    Figure 17.  Structural diagram of the triangular cavity Hermite-Gaussian mode resonance coupling experimental setup[121]

    Baidu
  • [1] 王琦, 王世超, 刘泰余, 等. 光声光谱多组分气体检测技术研究进展[J]. 光谱学与光谱分析,2022,42(1):1-8.

    WANG Q, WANG SH CH, LIU T Y, et al. Research progress of multi-component gas detection by photoacoustic spectroscopy[J]. Spectroscopy and Spectral Analysis, 2022, 42(1): 1-8. (in Chinese)
    [2] 马欲飞. 基于石英增强光声光谱的气体传感技术研究进展[J]. 物理学报,2021,70(16):160702. doi: 10.7498/aps.70.20210685

    MA Y F. Research progress of quartz-enhanced photoacoustic spectroscopy based gas sensing[J]. Acta Physica Sinica, 2021, 70(16): 160702. (in Chinese) doi: 10.7498/aps.70.20210685
    [3] 李悦, 张国霞, 蔡朝晴, 等. 大气压辉光放电结合圆柱约束增强金宝搏188软件怎么用 诱导击穿光谱应用于土壤中稀土元素的检测[J]. 分析化学,2022,50(9):1384-1390.

    LI Y, ZHANG G X, CAI ZH Q, et al. Atmospheric pressure glow discharge combined with cylindrical confinement enhanced laser-induced breakdown spectroscopy for determination of rare earth in soil[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1384-1390. (in Chinese)
    [4] 刘崎, 汪磊, 朱向冰, 等. 基于非分散红外法的二氧化碳浓度检测综述[J]. 红外,2022,43(7):1-7. doi: 10.3969/j.issn.1672-8785.2022.07.001

    LIU Q, WANG L, ZHU X B, et al. Review of CO2 concentration detection based on non-dispersive infrared method[J]. Infrared, 2022, 43(7): 1-7. (in Chinese) doi: 10.3969/j.issn.1672-8785.2022.07.001
    [5] PAN Y, LI Y, YAN CH X, et al. Improvement of concentration inversion model based on second harmonic valley spacing in wavelength modulation spectroscopy[J]. IEEE Access, 2020, 8: 227857-227865. doi: 10.1109/ACCESS.2020.3045587
    [6] MURZYN C, SIMS A, KRIER H, et al. High speed temperature, pressure, and water vapor concentration measurement in explosive fireballs using tunable diode laser absorption spectroscopy[J]. Optics and Lasers in Engineering, 2018, 110: 186-192. doi: 10.1016/j.optlaseng.2018.06.005
    [7] 曲艺. 大气光学遥感监测技术现状与发展趋势[J]. 中国光学,2013,6(6):834-840.

    QU Y. Technical status and development tendency of atmosphere optical remote and monitoring[J]. Chinese Optics, 2013, 6(6): 834-840. (in Chinese)
    [8] 金川, 蒋利桥, 李凡, 等. 正丁烷/空气射流火焰热释放率与火焰面厚度的平面金宝搏188软件怎么用 诱导荧光测试[J]. 中国金宝搏188软件怎么用 ,2022,49(13):1304001.

    JIN CH, JIANG L Q, LI F, et al. Technical status and development tendency of atmosphere optical remote and monitoring[J]. Chinese Journal of Lasers, 2022, 49(13): 1304001. (in Chinese)
    [9] 韩棒棒, 赵治月, 赵俊雨, 等. 基于金宝搏188软件怎么用 诱导荧光成像技术的截面含气率检测研究[J]. 仪器仪表学报,2021,42(10):2-8. doi: 10.19650/j.cnki.cjsi.J2107837

    HAN B B, ZHAO ZH Y, ZHAO J Y, et al. Study on the detection of void fraction based on laser-induced fluorescence imaging technology[J]. Chinese Journal of Scientific Instrument, 2021, 42(10): 2-8. (in Chinese) doi: 10.19650/j.cnki.cjsi.J2107837
    [10] 李聪, 杨金传, 王凯强, 等. 大气压微波等离子体发射光谱法检测磷、氯类毒剂模拟剂[J]. 分析化学,2022,50(9):1425-1434.

    LI C, YANG J CH, WANG K Q, et al. Detection of toxic simulant phosphorus and chlorine by atmospheric pressure microwave plasma optical emission spectrometry[J]. Chinese Journal of Analytical Chemistry, 2022, 50(9): 1425-1434. (in Chinese)
    [11] ALDÉN M, BOOD J, LI ZH SH, et al. Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques[J]. Proceedings of the Combustion Institute, 2011, 33(1): 69-97. doi: 10.1016/j.proci.2010.09.004
    [12] 李颖超, 李春生, 王宏霞, 等. 基于数字微镜的电感耦合等离子体发射光谱检测技术研究[J]. 分析化学,2022,50(8):1150-1157.

    LI Y Q, LI CH SH, WANG H X, et al. Research on detection technology of inductively coupled plasma optical emission spectrometer based on digital micromirror device[J]. Chinese Journal of Analytical Chemistry, 2022, 50(8): 1150-1157. (in Chinese)
    [13] 孙柳雅, 牛明生, 陈加雪, 等. 基于光声光谱技术的NO2探测[J]. 中国金宝搏188软件怎么用 ,2022,49(23):2310002.

    SUN L Y, NIU M SH, CHEN J X, et al. Nitrogen dioxide detection based on photoacoustic spectroscopy[J]. Chinese Journal of Lasers, 2022, 49(23): 2310002. (in Chinese)
    [14] SCHARF T, BRIAND D, BÜHLER S, et al. Miniaturized Fourier transform spectrometer for gas detection in the MIR region[J]. Sensors and Actuators B:Chemical, 2010, 147(1): 116-121. doi: 10.1016/j.snb.2010.03.050
    [15] 段拼搏, 王一红, 周宾, 等. 金宝搏188软件怎么用 吸收光谱技术噪声响应特性数值模拟研究[J]. 应用金宝搏188软件怎么用 ,2022,42(6):132-136.

    DUAN P B, WANG Y H, ZHOU B, et al. Numerical simulation research on noise response characteristics of laser absorption spectroscopy technology[J]. Applied Laser, 2022, 42(6): 132-136. (in Chinese)
    [16] SHAO L G, FANG B, ZHENG F, et al. Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3 μm DFB laser[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2019, 222: 117118. doi: 10.1016/j.saa.2019.05.023
    [17] 信丰鑫, 郭金家, 李杰, 等. 可调谐半导体金宝搏188软件怎么用 吸收光谱技术对CO2浓度的测量研究[J]. 中国海洋大学学报,2020,50(8):137-142.

    XIN F X, GUO J J, LI J, et al. Measurement of CO2 concentration by tunable diode laser absorption spectroscopy[J]. Periodical of Ocean University of China, 2020, 50(8): 137-142. (in Chinese)
    [18] 李金义, 李连辉, 赵烁, 等. 可调谐半导体金宝搏188软件怎么用 吸收光谱技术在石油工业中的应用研究[J]. 金宝搏188软件怎么用 与光电子学进展,2022,59(13):1300006.

    LI J Y, LI L H, ZHAO SH, et al. Application research of tunable diode laser absorption spectroscopy in petroleum industry[J]. Laser &Optoelectronics Progress, 2022, 59(13): 1300006. (in Chinese)
    [19] 李金义, 孙福双, 张宸阁, 等. 调谐金宝搏188软件怎么用 吸收光谱技术在燃煤电厂中的应用及展望[J]. 金宝搏188软件怎么用 杂志,2020,41(4):8-17. doi: 10.14016/j.cnki.jgzz.2020.04.008

    LI J Y, SUN F SH, ZHANG CH G, et al. Application and prospect of tunable laser absorption spectroscopy in coal-fired power plants[J]. Laser Journal, 2020, 41(4): 8-17. (in Chinese) doi: 10.14016/j.cnki.jgzz.2020.04.008
    [20] 阙华礼, 杨文亮, 信秀丽, 等. 基于金宝搏188软件怎么用 吸收光谱技术的农田氨挥发研究[J]. 光谱学与光谱分析,2020,40(3):885-890.

    QUE H L, YANG W L, XIN X L, et al. Ammonia volatilization from farmland measured by laser absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 885-890. (in Chinese)
    [21] 张超. 单原子催化剂电催化还原二氧化碳研究进展[J]. 应用化学,2022,39(6):871-887.

    ZHANG C H. Research Prospect of Single Atom Catalysts Towards Electrocatalytic Reduction of Carbon Dioxide[J]. CHINESE JOURNAL OF APPLIED CHEMISTRY, 2022, 39(6): 871-887. (in Chinese)
    [22] 袁志国, 马修真, 刘晓楠, 等. 利用可调谐金宝搏188软件怎么用 吸收光谱技术的柴油机排放温度测试研究[J]. 中国光学,2020,13(2):281-289. doi: 10.3788/co.20201302.0281

    YUAN ZH G, MA X ZH, LIU X N, et al. Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J]. Chinese Optics, 2020, 13(2): 281-289. (in Chinese) doi: 10.3788/co.20201302.0281
    [23] WANG C J, SAHAY P. Breath analysis using laser spectroscopic techniques: breath biomarkers, spectral fingerprints, and detection limits[J]. Sensors, 2009, 9(10): 8230-8262. doi: 10.3390/s91008230
    [24] 李恒宽, 朴亨, 王鹏, 等. 基于近红外吸收光谱技术的高精度CO2检测系统的研制[J]. 红外与金宝搏188软件怎么用 工程,2023,52(3):20210828.

    LI H K, PIAO H, WANG P, et al. Development of high precision CO2 detection system based on near infrared absorption spectroscopy[J]. Infrared and Laser Engineering, 2023, 52(3): 20210828. (in Chinese)
    [25] SCHILT S, THÉVENAZ L, ROBERT P. Wavelength modulation spectroscopy: combined frequency and intensity laser modulation[J]. Applied Optics, 2003, 42(33): 6728-6738. doi: 10.1364/AO.42.006728
    [26] SMITH J P, SOLOMON S. Atmospheric NO3 3. Sunrise disappearance and the stratospheric profile[J]. Journal of Geophysical Research, 1990, 95(D9): 13819-13827. doi: 10.1029/JD095iD09p13819
    [27] 田鑫, 任博, 谢品华, 等. 多轴差分吸收光谱技术对冬季大气HONO垂直分布特征研究[J]. 光谱学与光谱分析,2022,42(7):2039-2046. doi: 10.3964/j.issn.1000-0593(2022)07-2039-08

    TIAN X, REN B, XIE P H, et al. Study on vertical distribution of atmospheric HONO in winter based on multi-axis differential absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2022, 42(7): 2039-2046. (in Chinese) doi: 10.3964/j.issn.1000-0593(2022)07-2039-08
    [28] 王玉诏, 陶宇亮, 孙海青, 等. 基于金宝搏188软件怎么用 掩星吸收光谱的二氧化碳探测技术[J]. 中国光学,2021,14(3):634-642. doi: 10.37188/CO.2020-0201

    WANG Y ZH, TAO Y L, SUN H Q, et al. Carbon dioxide detection technology based on the laser occultation absorption spectrum[J]. Chinese Optics, 2021, 14(3): 634-642. (in Chinese) doi: 10.37188/CO.2020-0201
    [29] 郑海明, 朱小朋, 冯帅帅, 等. 基于差分吸收光谱技术监测苯-甲苯-二甲苯的实验研究[J]. 光谱学与光谱分析,2021,41(2):467-472.

    ZHENG H M, ZHU X P, FENG SH SH, et al. Experimental research on monitoring of BTX concentration based on differential optical absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(2): 467-472. (in Chinese)
    [30] 王章军, 郝菁, 宋晨光, 等. 基于差分光学吸收光谱技术的交通主干道污染气体监测[J]. 金宝搏188软件怎么用 与光电子学进展,2020,57(9):093003.

    WANG ZH J, HAO J, SONG CH G, et al. Traffic pollution gas monitoring based on differential optical absorption spectroscopy technology[J]. Laser &Optoelectronics Progress, 2020, 57(9): 093003. (in Chinese)
    [31] HÖNNINGER G, VON FRIEDEBURG C, PLATT U. Multi axis differential optical absorption spectroscopy (MAX-DOAS)[J]. Atmospheric Chemistry and Physics, 2004, 4(1): 231-254. doi: 10.5194/acp-4-231-2004
    [32] WHITE J U. Long optical paths of large aperture[J]. Journal of the Optical Society of America, 1942, 32(5): 285-288. doi: 10.1364/JOSA.32.000285
    [33] HERRIOTT D R, SCHULTE H J. Folded optical delay lines[J]. Applied Optics, 1965, 4(8): 883-889. doi: 10.1364/AO.4.000883
    [34] 许棕, 曹亚南, 张荣荣, 等. 用于金宝搏188软件怎么用 吸收光谱技术的新型平面镜光学多通池的设计与分析[J]. 量子电子学报,2021,38(4):405-411.

    XU Z, CAO Y N, ZHANG R R, et al. Design and analysis of a novel multipass cell based on two plane mirrors for laser absorption spectroscopy[J]. Chinese Journal of Quantum Electronics, 2021, 38(4): 405-411. (in Chinese)
    [35] PAUL J B, LAPSON L, ANDERSON J G. Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment[J]. Applied Optics, 2001, 40(27): 4904-4910. doi: 10.1364/AO.40.004904
    [36] ZYBIN A, KURITSYN Y A, MIRONENKO V R, et al. Cavity enhanced wavelength modulation spectrometry for application in chemical analysis[J]. Applied Physics B:Lasers and Optics, 2004, 78(1): 103-109. doi: 10.1007/s00340-003-1342-0
    [37] ENGEL G S, DRISDELL W S, KEUTSCH F N, et al. Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 µm: new sensitivity limits for absorption measurements in passive optical cavities[J]. Applied Optics, 2006, 45(36): 9221-9229. doi: 10.1364/AO.45.009221
    [38] 张海鹏, 郑凯元, 李俊豪, 等. 离轴积分腔输出光谱气体传感降噪技术[J]. 光学学报,2021,41(24):2430002.

    ZHANG H P, ZHENG K Y, LI J H, et al. Denoising technique in gas sensing based on off-axis integrated cavity output spectroscopy[J]. Acta Optica Sinica, 2021, 41(24): 2430002. (in Chinese)
    [39] ZHAO W, GAO X, CHEN W, et al. Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared[J]. Applied Physics B, 2007, 86(2): 353-359. doi: 10.1007/s00340-006-2451-3
    [40] 李俊豪, 郑凯元, 席振海, 等. 基于开放光路离轴积分腔的甲烷传感技术与实验[J]. 中国金宝搏188软件怎么用 ,2021,48(16):1610002. doi: 10.3788/CJL202148.1610002

    LI J H, ZHENG K Y, XI ZH H, et al. Open-path off-axis integrated cavity-based methane sensing technique and experiment[J]. Chinese Journal of Lasers, 2021, 48(16): 1610002. (in Chinese) doi: 10.3788/CJL202148.1610002
    [41] 张国贤, 胡仁志, 谢品华, 等. 基于离轴积分腔输出光谱对泰州大气NH3浓度观测与分析[J]. 光谱学与光谱分析,2021,41(2):360-367.

    ZHANG G X, HU R ZH, XIE P H, et al. Observation and analysis of Taizhou atmosphere NH3 concentration by off-axis integrated cavity output spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(2): 360-367. (in Chinese)
    [42] 董洋, 王静静, 周心禺, 等. 基于离轴积分腔输出光谱的深海可燃冰探测技术[J]. 中国金宝搏188软件怎么用 ,2020,47(8):0811003. doi: 10.3788/CJL202047.0811003

    DONG Y, WANG J J, ZHOU X Y, et al. Detection of methane hydrate in deep sea based on off-axis integrated cavity output spectroscopy[J]. Chinese Journal of Lasers, 2020, 47(8): 0811003. (in Chinese) doi: 10.3788/CJL202047.0811003
    [43] GIANFRANI L, FOX R W, HOLLBERG L. Cavity-enhanced absorption spectroscopy of molecular oxygen[J]. Journal of the Optical Society of America B, 1999, 16(12): 2247-2254. doi: 10.1364/JOSAB.16.002247
    [44] ENGELN R, BERDEN G, PEETERS R, et al. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy[J]. Review of Scientific Instruments, 1998, 69(11): 3763-3769. doi: 10.1063/1.1149176
    [45] FIEDLER S E, HESE A, RUTH A A. Incoherent broad-band cavity-enhanced absorption spectroscopy[J]. Chemical Physics Letters, 2003, 371(3-4): 284-294. doi: 10.1016/S0009-2614(03)00263-X
    [46] 陈东阳, 周力, 杨复沫, 等. 腔增强吸收光谱技术在大气环境研究中的应用进展[J]. 光谱学与光谱分析,2021,41(9):2688-2695.

    CHEN D Y, ZHOU L, YANG F M, et al. Application progress of cavity-enhanced absorption spectroscopy (CEAS) in atmospheric environment research[J]. Spectroscopy and Spectral Analysis, 2021, 41(9): 2688-2695. (in Chinese)
    [47] 段俊, 唐科, 秦敏, 王丹, 等. 宽带腔增强吸收光谱技术应用于大气NO3自由基的测量[J]. 物理学报,2021,70(1):010702. doi: 10.7498/aps.70.20201066

    DUAN J, TANG K, QIN M, et al. Broadband cavity enhanced absorption spectroscopy for measuring atmospheric NO3 radical[J]. Acta Physica Sinica, 2021, 70(1): 010702. (in Chinese) doi: 10.7498/aps.70.20201066
    [48] BALL S M, LANGRIDGE J M, JONES R L. Broadband cavity enhanced absorption spectroscopy using light emitting diodes[J]. Chemical Physics Letters, 2004, 398(1-3): 68-74. doi: 10.1016/j.cplett.2004.08.144
    [49] 张鹤露, 秦敏, 方武, 等. 基于非相干宽带腔增强吸收光谱技术对碘氧自由基的定量研究[J]. 物理学报,2021,70(15):150702. doi: 10.7498/aps.70.20210312

    ZHANG H L, QIN M, FANG W, et al. Quantification of iodine monoxide based on incoherent broadband cavity enhanced absorption spectroscopy[J]. Acta Physica Sinica, 2021, 70(15): 150702. (in Chinese) doi: 10.7498/aps.70.20210312
    [50] WASHENFELDER R A, ATTWOOD A R, FLORES J M, et al. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde[J]. Atmospheric Measurement Techniques, 2016, 9(1): 41-52. doi: 10.5194/amt-9-41-2016
    [51] LANGRIDGE J M, LAURILA T, WATT R S. Cavity enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum radiation source[J]. Optics Express, 2008, 16(14): 10178-10188. doi: 10.1364/OE.16.010178
    [52] HULT J, WATT R S, KAMINSKI C F. High bandwidth absorption spectroscopy with a dispersed supercontinuum source[J]. Optics Express, 2007, 15(18): 11385-11395. doi: 10.1364/OE.15.011385
    [53] LANGRIDGE J M, BALL S M, JONES R L. A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes[J]. Analyst, 2006, 131(8): 916-922. doi: 10.1039/b605636a
    [54] LAURILA T, BURNS I S, HULT J, et al. A calibration method for broad-bandwidth cavity enhanced absorption spectroscopy performed with supercontinuum radiation[J]. Applied Physics B, 2011, 102(2): 271-278.
    [55] 韩荦, 夏滑, 董凤忠, 等. 腔增强吸收光谱技术研究进展及其应用[J]. 中国金宝搏188软件怎么用 ,2018,45(9):0911003. doi: 10.3788/CJL201845.0911003

    HAN L, XIA H, DONG F ZH, et al. Progress and application of cavity enhanced absorption spectroscopy technology[J]. Chinese Journal of Lasers, 2018, 45(9): 0911003. (in Chinese) doi: 10.3788/CJL201845.0911003
    [56] MALARA P, MADDALONI P, GAGLIARDI G, et al. Combining a difference-frequency source with an off-axis high-finesse cavity for trace-gas monitoring around 3 μm[J]. Optics Express, 2006, 14(3): 1304-1313. doi: 10.1364/OE.14.001304
    [57] KARPF A, RAO G N. Enhanced sensitivity for the detection of trace gases using multiple line integrated absorption spectroscopy[J]. Applied Optics, 2009, 48(27): 5061-5066. doi: 10.1364/AO.48.005061
    [58] WOJTAS J, MEDRZYCKI R, RUTECKA B, et al. NO and N2O detection employing cavity enhanced technique[J]. Proceedings of SPIE, 2012, 8374: 837414. doi: 10.1117/12.919240
    [59] KASYUTICH V L, MARTIN P A, HOLDSWORTH R J. Phase-shift off-axis cavity-enhanced absorption detector of nitrogen dioxide[J]. Measurement Science and Technology, 2006, 17(4): 923-931. doi: 10.1088/0957-0233/17/4/044
    [60] DREVER R W P, HALL J L, KOWALSKI F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B, 1983, 31(2): 97-105.
    [61] ROMANINI D, KACHANOV A A, MORVILLE J, et al. Measurement of trace gases by diode laser cavity ringdown spectroscopy[J]. Proceedings of SPIE, 1999, 3821: 94-104. doi: 10.1117/12.364170
    [62] 程桐, 杨天悦, 宫廷, 等. 光学反馈腔增强吸收光谱技术中干涉抑制方法[J]. 物理学报,2022,71(6):064205. doi: 10.7498/aps.71.20211882

    CHENG T, YANG T Y, GONG T, et al. Interference suppression method in optical feedback-cavity enhanced absorption spectroscopy technology[J]. Acta Physica Sinica, 2022, 71(6): 064205. (in Chinese) doi: 10.7498/aps.71.20211882
    [63] 许非, 周晓彬, 刘政波, 等. 近红外光学反馈线性腔增强吸收光谱技术[J]. 光学 精密工程,2021,29(5):933-939. doi: 10.37188/OPE.2020.0657

    XU F, ZHOU X B, LIU ZH B, et al. Near-infrared optical-feedback linear cavity-enhanced absorption spectroscopy[J]. Optics and Precision Engineering, 2021, 29(5): 933-939. (in Chinese) doi: 10.37188/OPE.2020.0657
    [64] BERGIN A G V, HANCOCK G, RITCHIE G A D, et al. Linear cavity optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser[J]. Optics Letters, 2013, 38(14): 2475-2477. doi: 10.1364/OL.38.002475
    [65] LANG N, MACHERIUS U, WIESE M, et al. Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy[J]. Optics Express, 2016, 24(6): A536-A543. doi: 10.1364/OE.24.00A536
    [66] LANDSBERG J, ROMANINI D, KERSTEL E. Very high finesse optical-feedback cavity-enhanced absorption spectrometer for low concentration water vapor isotope analyses[J]. Optics Letters, 2014, 39(7): 1795-1798. doi: 10.1364/OL.39.001795
    [67] HAMILTON D J, ORR-EWING A J. A quantum cascade laser-based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air[J]. Applied Physics B, 2011, 102(4): 879-890. doi: 10.1007/s00340-010-4259-4
    [68] 徐毓阳, 余锦, 貊泽强, 等. 腔衰荡吸收光谱技术的研究进展及典型应用[J]. 金宝搏188软件怎么用 与光电子学进展,2021,58(19):1900001.

    XU Y Y, YU J, MO Z Q, et al. Advances in cavity ring-down absorption spectroscopy research and typical applications[J]. Laser &Optoelectronics Progress, 2021, 58(19): 1900001. (in Chinese)
    [69] CROSSON E R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor[J]. Applied Physics B, 2008, 92(3): 403-408. doi: 10.1007/s00340-008-3135-y
    [70] KASYUTICH V L, POULIDI D, JALIL M, et al. Application of a cw quantum cascade laser CO2 analyser to catalytic oxidation reaction monitoring[J]. Applied Physics B, 2013, 110(2): 263-269. doi: 10.1007/s00340-012-5154-y
    [71] O’KEEFE A, DEACON A G. Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources[J]. Review of Scientific Instruments, 1998, 59(12): 2544-2551.
    [72] ROMANINI D, KACHANOV A A, STOECKEL F. Diode laser cavity ring down spectroscopy[J]. Chemical Physics Letters, 1997, 270(5-6): 538-545. doi: 10.1016/S0009-2614(97)00406-5
    [73] BALL S M, POVEY I M, NORTON E G, et al. Broadband cavity ringdown spectroscopy of the NO3 radical[J]. Chemical Physics Letters, 2001, 342(1-2): 113-120. doi: 10.1016/S0009-2614(01)00573-5
    [74] 李哲, 张志荣, 夏滑, 等. 连续波腔衰荡吸收光谱技术中的模式匹配研究[J]. 中国金宝搏188软件怎么用 ,2022,49(4):0411001.

    LI ZH, ZHANG ZH R, XIA H, et al. Mode matching in continuous-wave cavity ring-down absorption spectroscopy[J]. Chinese Journal of Lasers, 2022, 49(4): 0411001. (in Chinese)
    [75] 马国盛, 刘英, 邓昊, 等. 高精细度光学反馈腔衰荡光谱技术[J]. 光学 精密工程,2022,30(19):2305-2312. doi: 10.37188/OPE.20223019.2305

    MA G SH, LIU Y, DENG H, et al. High finesse optical feedback cavity ringdown spectroscopy[J]. Optics and Precision Engineering, 2022, 30(19): 2305-2312. (in Chinese) doi: 10.37188/OPE.20223019.2305
    [76] 王兴平, 赵刚, 焦康, 等. 光学反馈线性腔衰荡光谱技术不确定性[J]. 物理学报,2022,71(12):124201. doi: 10.7498/aps.70.20220186

    WANG X P, ZHAO G, JIAO K, et al. Uncertainty of optical feedback linear cavity ringdown spectroscopy[J]. Acta Physica Sinica, 2022, 71(12): 124201. (in Chinese) doi: 10.7498/aps.70.20220186
    [77] 胡迈, 陈祥, 张辉, 等. 一次谐波锁频的快速光腔衰荡光谱检测[J]. 光学 精密工程,2022,30(4):363-371. doi: 10.37188/OPE.20223004.0363

    HU M, CHEN X, ZHANG H, et al. Fast optical cavity ring-down spectroscopy detection based on first harmonic frequency locking[J]. Optics and Precision Engineering, 2022, 30(4): 363-371. (in Chinese) doi: 10.37188/OPE.20223004.0363
    [78] LEVENSON M D, PALDUS B A, SPENCE T G, et al. Optical heterodyne detection in cavity ring-down spectroscopy[J]. Chemical Physics Letters, 1998, 290(4-6): 335-340. doi: 10.1016/S0009-2614(98)00500-4
    [79] MCHALE L E, HECOBIAN A, YALIN A P. Open-path cavity ring-down spectroscopy for trace gas measurements in ambient air[J]. Optics Express, 2016, 24(5): 5523-5535. doi: 10.1364/OE.24.005523
    [80] 貊泽强, 余锦, 何建国, 等. 基于阈值调节的腔衰荡光谱检测量程扩展方法研究[J]. 中国金宝搏188软件怎么用 ,2020,47(8):0804001. doi: 10.3788/CJL202047.0804001

    MO Z Q, YU J, HE J G, et al. Method for measurement range extension of cavity ring-down spectroscopy based on threshold modification[J]. Chinese Journal of Lasers, 2020, 47(8): 0804001. (in Chinese) doi: 10.3788/CJL202047.0804001
    [81] MO Z Q, YU J, WANG J D, et al. Current-modulated cavity ring-down spectroscopy for mobile monitoring of natural gas leaks[J]. Journal of Lightwave Technology, 2021, 39(12): 4020-4027. doi: 10.1109/JLT.2020.3003006
    [82] 宋绍漫, 颜昌翔. 基于光腔衰荡光谱技术的痕量甲烷检测[J]. 光谱学与光谱分析,2020,40(7):2023-2028.

    SONG SH M, YAN CH X. Trace methane detection based on cavity ring-down spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(7): 2023-2028. (in Chinese)
    [83] WANG J D, YU J, MO ZH Q, et al. Multicomponent gas detection based on concise CW-cavity ring-down spectroscopy with a bow-tie design[J]. Applied Optics, 2019, 58(11): 2773-2781. doi: 10.1364/AO.58.002773
    [84] 董贺伟, 郭瑞民, 崔文超, 等. 基于折叠腔的光腔衰荡光谱技术研究[J]. 中国金宝搏188软件怎么用 ,2020,47(3):0311001. doi: 10.3788/CJL202047.0311001

    DONG H W, GUO R M, CUI W CH, et al. Cavity ring-down spectroscopy based on folded cavity[J]. Chinese Journal of Lasers, 2020, 47(3): 0311001. (in Chinese) doi: 10.3788/CJL202047.0311001
    [85] ATHERTON K, STEWART G, YU H. Fiber optic intra-cavity spectroscopy: combined ring-down and ICLAS architectures using fiber lasers[J]. Proceedings of SPIE, 2001, 4204: 124-130. doi: 10.1117/12.417401
    [86] GUPTA M, JIAO H, O’KEEFE A. Cavity-enhanced spectroscopy in optical fibers[J]. Optics Letters, 2002, 27(21): 1878-1880. doi: 10.1364/OL.27.001878
    [87] TARSA P B, BRZOZOWSKI D M, RABINOWITZ P, et al. Cavity ringdown strain gauge[J]. Optics Letters, 2004, 29(12): 1339-1341. doi: 10.1364/OL.29.001339
    [88] FLEISHER A J, ADKINS E M, REED Z D, et al. Twenty-five-fold reduction in measurement uncertainty for a molecular line intensity[J]. Physical Review Letters, 2019, 123(4): 043001. doi: 10.1103/PhysRevLett.123.043001
    [89] 黄杰涛, 王大鹏. 共轭聚合物在溶液中吸收峰红移的物理根源解析[J]. 应用化学,2021,38(11):1486-1493.

    HUANC J T, WANC D P. Analysis of the Physical Origin of the Red-Shift of Absorption Peaks of Conjugated Polymers in Solution[J]. CHINESE JOURNAL OF APPLIED CHEMISTRY, 2021, 38(11): 1486-1493. (in Chinese)
    [90] GHYSELS M, LIU Q N, FLEISHER A J, et al. A variable-temperature cavity ring-down spectrometer with application to line shape analysis of CO2 spectra in the 1600 nm region[J]. Applied Physics B, 2017, 123(4): 124. doi: 10.1007/s00340-017-6686-y
    [91] LONG D A, FLEISHER A J, LIU Q, et al. Ultra-sensitive cavity ring-down spectroscopy in the mid-infrared spectral region[J]. Optics Letters, 2016, 41(7): 1612-1615. doi: 10.1364/OL.41.001612
    [92] LIANG SH X, QIN M, XIE P H, et al. Development of an incoherent broadband cavity-enhanced absorption spectrometer for measurements of ambient glyoxal and NO2 in a polluted urban environment[J]. Atmospheric Measurement Techniques, 2019, 12(4): 2499-2512. doi: 10.5194/amt-12-2499-2019
    [93] 梁帅西, 秦敏, 段俊, 等. 机载腔增强吸收光谱系统应用于大气NO2空间高时间分辨率测量[J]. 物理学报,2017,66(9):090704. doi: 10.7498/aps.66.090704

    LIANG SH X, QIN M, DUAN J, et al. Airborne cavity enhanced absorption spectroscopy for high time resolution measurements of atmospheric NO2[J]. Acta Physica Sinica, 2017, 66(9): 090704. (in Chinese) doi: 10.7498/aps.66.090704
    [94] ZHAO W X, DONG M L, CHEN W D, et al. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm[J]. Analytical Chemistry, 2013, 85(4): 2260-2268. doi: 10.1021/ac303174n
    [95] ZHAO W, XU X, DONG M, et al. Development of a cavity-enhanced aerosol albedometer[J]. Atmospheric Measurement Techniques, 2014, 7(8): 2551-2566. doi: 10.5194/amt-7-2551-2014
    [96] RAO G N, KARPF A. High sensitivity detection of NO2 employing cavity ringdown spectroscopy and an external cavity continuously tunable quantum cascade laser[J]. Applied Optics, 2010, 49(26): 4906-4914. doi: 10.1364/AO.49.004906
    [97] 马路遥, 林俊, 张亮, 等. 温室气体浓度监测的光腔衰荡光谱研究进展[J]. 计量学报,2022,43(2):274-280. doi: 10.3969/j.issn.1000-1158.2022.02.22

    MA L Y, LIN J, ZHANG L, et al. Review on the cavity ring-down spectroscopy for greenhouse gas monitoring[J]. Acta Metrologica Sinica, 2022, 43(2): 274-280. (in Chinese) doi: 10.3969/j.issn.1000-1158.2022.02.22
    [98] 刘文清, 王兴平, 马国盛, 等. 高灵敏腔衰荡光谱技术及其应用研究[J]. 光学学报,2021,41(1):0130003. doi: 10.3788/AOS202141.0130003

    LIU W Q, WANG X P, MA G SH, et al. Research of high sensitivity cavity ring-down spectroscopy technology and its application[J]. Acta Optica Sinica, 2021, 41(1): 0130003. (in Chinese) doi: 10.3788/AOS202141.0130003
    [99] BLAIKIE T P J, COUPER J, HANCOCK G, et al. Portable device for measuring breath acetone based on sample preconcentration and cavity enhanced spectroscopy[J]. Analytical Chemistry, 2016, 88(22): 11016-11021. doi: 10.1021/acs.analchem.6b02837
    [100] BAYRAKLI I, TURKMEN A, AKMAN H, et al. Applications of external cavity diode laser-based technique to noninvasive clinical diagnosis using expired breath ammonia analysis: chronic kidney disease, epilepsy[J]. Journal of Biomedical Optics, 2016, 21(8): 087004. doi: 10.1117/1.JBO.21.8.087004
    [101] NERI G, LACQUANITI A, RIZZO G, et al. Real-time monitoring of breath ammonia during haemodialysis: use of ion mobility spectrometry (IMS) and cavity ring-down spectroscopy (CRDS) techniques[J]. Nephrology Dialysis Transplantation, 2012, 27(7): 2945-2952. doi: 10.1093/ndt/gfr738
    [102] GONG Z Y, SUN M X, JIAN C Y, et al. A ringdown breath acetone analyzer: performance and validation using gas chromatography-mass spectrometry[J]. Journal of Analytical &Bioanalytical Techniques, 2014, S7(012): 013.
    [103] 段俊, 秦敏, 卢雪, 等. 腔增强吸收光谱技术中镜片反射率的标定[J]. 光子学报,2015,44(12):1201001. doi: 10.3788/gzxb20154412.1201001

    DUAN J, QIN M, LU X, et al. Calibration of mirror reflectivity for cavity enhanced absorption spectroscopy[J]. Acta Photonica Sinica, 2015, 44(12): 1201001. (in Chinese) doi: 10.3788/gzxb20154412.1201001
    [104] 吴陆益, 高光珍, 刘新, 等. 腔增强吸收光谱技术中的腔镜反射率标定方法研究[J]. 光谱学与光谱分析,2021,41(9):2945-2949.

    WU L Y, GAO G ZH, LIU X, et al. Study on the calibration of reflectivity of the cavity mirrors used in cavity enhanced absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(9): 2945-2949. (in Chinese)
    [105] REMPE G, THOMPSON R J, KIMBLE H J, et al. Measurement of ultralow losses in an optical interferometer[J]. Optics Letters, 1992, 17(5): 363-365. doi: 10.1364/OL.17.000363
    [106] 李利平, 刘涛, 李刚, 等. 超高精细度光学腔中低损耗的测量[J]. 物理学报,2004,53(5):1401-1405. doi: 10.3321/j.issn:1000-3290.2004.05.026

    LI L P, LIU T, LI G, et al. Measurement of ultra-low losses in optical supercavity[J]. Acta Physica Sinica, 2004, 53(5): 1401-1405. (in Chinese) doi: 10.3321/j.issn:1000-3290.2004.05.026
    [107] WANG CH J, SRIVASTAVA N, DIBBLE T S. Observation and quantification of OH radicals in the far downstream part of an atmospheric microwave plasma jet using cavity ringdown spectroscopy[J]. Applied Physics Letters, 2009, 95(5): 051501. doi: 10.1063/1.3177314
    [108] 万福, 陈伟根, 顾朝亮, 等. 光反馈腔增强吸收光谱技术的痕量乙烷检测研究[J]. 光谱学与光谱分析,2015,35(10):2792-2796.

    WAN F, CHEN W G, GU ZH L, et al. Measurement of trace C2H6 based on optical-feedback cavity-enhanced absorption spectroscopy[J]. Spectroscopy and Spectral Analysis, 2015, 35(10): 2792-2796. (in Chinese)
    [109] DICKENS G R, PAULL C K, WALLACE P. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir[J]. Nature, 1997, 385(6615): 426-428. doi: 10.1038/385426a0
    [110] SUN Y R, PAN H, CHENG C F, et al. Application of cavity ring-down spectroscopy to the Boltzmann constant determination[J]. Optics Express, 2011, 19(21): 19993-20002. doi: 10.1364/OE.19.019993
    [111] MENZEL L, KOSTEREV A A, CURL R F, et al. Spectroscopic detection of biological NO with a quantum cascade laser[J]. Applied Physics B, 2001, 72(7): 859-863. doi: 10.1007/s003400100562
    [112] MANNE J, LIM A, JÄGER W, et al. Off-axis cavity enhanced spectroscopy based on a pulsed quantum cascade laser for sensitive detection of ammonia and ethylene[J]. Applied Optics, 2010, 49(28): 5302-5308. doi: 10.1364/AO.49.005302
    [113] NASIR E F, FAROOQ A. Intra-pulse laser absorption sensor with cavity enhancement for oxidation experiments in a rapid compression machine[J]. Optics Express, 2018, 26(11): 14601-14609. doi: 10.1364/OE.26.014601
    [114] PALDUS B A, HARB C C, SPENCE T G, et al. Cavity ringdown spectroscopy using mid-infrared quantum-cascade lasers[J]. Optics Letters, 2000, 25(9): 666-668. doi: 10.1364/OL.25.000666
    [115] TERABAYASHI R, SONNENSCHEIN V, TOMITA H, et al. Optical feedback in dfb quantum cascade laser for mid-infrared cavity ring-down spectroscopy[J]. Hyperfine Interactions, 2017, 238(1): 10. doi: 10.1007/s10751-016-1390-6
    [116] HUANG H F, LEHMANN K K. CW cavity ring-down spectroscopy (CRDS) with a semiconductor optical amplifier as intensity modulator[J]. Chemical Physics Letters, 2008, 463(1-3): 246-250. doi: 10.1016/j.cplett.2008.08.030
    [117] 马维光, 周晓彬, 曹振松, 等. 基于连续波腔衰荡光谱的CO2气体分析装置研制[J]. 量子电子学报,2021,38(5):633-640.

    MA W G, ZHOU X B, CAO ZH S, et al. Development of CO2 gas analyzer based on continuous wave cavity ring-down spectroscopy[J]. Chinese Journal of Quantum Electronics, 2021, 38(5): 633-640. (in Chinese)
    [118] REN Y J, YAN CH X, WU C J, et al. High-precision static alignment scheme based on the eigenfrequency separation characteristics of same-order hermite-gaussian mode in triangular ring-down cavities[J]. IEEE Access, 2022, 10: 75549-75557. doi: 10.1109/ACCESS.2022.3192425
    [119] HUANG H F, LEHMANN K K. Noise in cavity ring-down spectroscopy caused by transverse mode coupling[J]. Optics Express, 2007, 15(14): 8745-8759. doi: 10.1364/OE.15.008745
    [120] REN Y J, YAN CH X, WU C J, et al. Resonant frequency separation characteristics of the same-order hermite-gaussian mode in the astigmatic triangular cavity of a cavity ring-down spectroscope[J]. IEEE Access, 2022, 10: 53703-53712. doi: 10.1109/ACCESS.2022.3176452
    [121] REN Y J, YAN CH X, ZHANG X M, et al. Resonant coupling of hermite-gaussian transverse modes in the triangular cavity of a cavity ring-down spectroscope[J]. Photonics, 2022, 9(9): 595. doi: 10.3390/photonics9090595
    [122] 谭中奇, 龙兴武, 张斌. 探测器的响应特性及对连续波腔衰荡技术测量的影响[J]. 中国金宝搏188软件怎么用 ,2009,36(4):959-963. doi: 10.3788/CJL20093604.0959

    TAN ZH Q, LONG X W, ZHANG B. Detector's response characteristic and its influence on metrical result of continuous-wave cavity ring-down technique[J]. Chinese Journal of Lasers, 2009, 36(4): 959-963. (in Chinese) doi: 10.3788/CJL20093604.0959
    [123] 王金舵, 余锦, 貊泽强, 等. 连续波腔衰荡光谱技术中模式筛选的数值方法[J]. 物理学报,2019,68(24):244201. doi: 10.7498/aps.68.20190844

    WANG J D, YU J, MO Z Q, et al. Numerical methods of mode selection in continuous-wave cavity ring-down spectroscopy[J]. Acta Physica Sinica, 2019, 68(24): 244201. (in Chinese) doi: 10.7498/aps.68.20190844
    [124] 赵刚, 李志新, 马维光, 等. 阈值电路特性对腔衰荡光谱测量影响的实验研究[J]. 光谱学与光谱分析,2014,34(8):2026-2030. doi: 10.3964/j.issn.1000-0593(2014)08-2026-05

    ZHAO G, LI ZH X, MA W G, et al. Experimental investigations of cavity ring-down spectroscopy under different threshold circuit design[J]. Spectroscopy and Spectral Analysis, 2014, 34(8): 2026-2030. (in Chinese) doi: 10.3964/j.issn.1000-0593(2014)08-2026-05
    [125] MEIJER G, BOOGAARTS M G H, JONGMA R T, et al. Coherent cavity ring down spectroscopy[J]. Chemical Physics Letters, 1994, 217(1-2): 112-116. doi: 10.1016/0009-2614(93)E1361-J
    [126] 胡誉元, 貊泽强, 唐吉龙, 等. 锁频技术在腔衰荡光谱检测中的研究进展及典型应用[J/OL]. 金宝搏188软件怎么用 与光电子学进展, 2022. (2023-04-08). http://kns.cnki.net/kcms/detail/31.1690.TN.20220714.1335.431.html.

    HU Y Y, MO Z Q, TANG J L, et al.. Research progress and typical applications of frequency locking technique in cavity ring-down spectroscopy detection[J/OL]. Laser & Optoelectronics Progress, 2022. (2023-04-08). http://kns.cnki.net/kcms/detail/31.1690.TN.20220714.1335.431.html. (in Chinese)
    [127] PALDUS B A, KACHANOV A A. An historical overview of cavity-enhanced methods[J]. Canadian Journal of Physics, 2005, 83(10): 975-999. doi: 10.1139/p05-054
    [128] SPENCE T G, HARB C C, PALDUS B A, et al. A laser-locked cavity ring-down spectrometer employing an analog detection scheme[J]. Review of Scientific Instruments, 2000, 71(2): 347-353. doi: 10.1063/1.1150206
    [129] HALMER D, VON BASUM G, HERING P, et al. Fast exponential fitting algorithm for real-time instrumental use[J]. Review of Scientific Instruments, 2004, 75(6): 2187-2191. doi: 10.1063/1.1711189
    [130] MAZURENKA M, WADA R, SHILLINGS A J L, et al. Fast Fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2[J]. Applied Physics B, 2005, 81(1): 135-141. doi: 10.1007/s00340-005-1834-1
    [131] BOYSON T K, SPENCE T G, CALZADA M E, et al. Frequency domain analysis for laser-locked cavity ringdown spectroscopy[J]. Optics Express, 2011, 19(9): 8092-8101. doi: 10.1364/OE.19.008092
  • 加载中
图(17)
计量
  • 文章访问数:  1574
  • HTML全文浏览量:  643
  • PDF下载量:  535
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-28
  • 修回日期:  2023-01-03
  • 网络出版日期:  2023-04-17

目录

    /

    返回文章
    返回
    Baidu
    map