留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

特种芯光纤光镊技术研究进展

李红,朱应鑫,周雅妮,王海波,董明利,祝连庆

downloadPDF
李红, 朱应鑫, 周雅妮, 王海波, 董明利, 祝连庆. 特种芯光纤光镊技术研究进展[J]. , 2023, 16(6): 1293-1304. doi: 10.37188/CO.2023-0016
引用本文: 李红, 朱应鑫, 周雅妮, 王海波, 董明利, 祝连庆. 特种芯光纤光镊技术研究进展[J]. , 2023, 16(6): 1293-1304.doi:10.37188/CO.2023-0016
LI Hong, ZHU Ying-xin, ZHOU Ya-ni, WANG Hai-bo, DONG Ming-li, ZHU Lian-qing. Advances in optical fiber tweezer technology based on hetero-core fiber[J]. Chinese Optics, 2023, 16(6): 1293-1304. doi: 10.37188/CO.2023-0016
Citation: LI Hong, ZHU Ying-xin, ZHOU Ya-ni, WANG Hai-bo, DONG Ming-li, ZHU Lian-qing. Advances in optical fiber tweezer technology based on hetero-core fiber[J].Chinese Optics, 2023, 16(6): 1293-1304.doi:10.37188/CO.2023-0016

特种芯光纤光镊技术研究进展

doi:10.37188/CO.2023-0016
基金项目:国家自然科学基金(No. 61903042);北京市自然基金(No. 4202027);北京信息科技大学2022年大学生创新创业训练计划项目(No. S202211232012)
详细信息
    作者简介:

    李 红(1985—),女,河北唐山人,博士,硕士生导师,2016年于合肥工业大学获得博士学位,主要研究方向为光纤传感技术、仪器科学与精密测量等。E-mail:lihong@bistu.edu.cn

    朱应鑫(1998—),男,山东济南人,硕士研究生,2021年于青岛理工大学获得学士学位,主要研究方向为光纤光镊技术。E-mail:zhuyingxin1998@163.com

  • 中图分类号:Q631

Advances in optical fiber tweezer technology based on hetero-core fiber

Funds:Supported by National Natural Science Foundation of China (No. 61903042); Beijing Natural Science Foundation (No. 4202027); 2022 Undergraduate Innovation and Entrepreneurship Training Program of BISTU (No. S202211232012)
More Information
  • 摘要:

    光纤光镊具有结构简单、操作灵活、尺寸小的特点,在生化分析、生命科学等领域有广泛应用。特殊纤芯结构的光纤探针在近场倏逝波光阱力、纤芯光束耦合传输、微流控技术交叉协同应用等方面具有天然优势,能实现细胞、亚细胞级微粒收集、输运等功能,可以显著提升微粒的三维捕获能力以及动态操纵水平。本文综述了不同纤芯结构光纤光镊的结构特点与应用技术研究进展,对特种芯光纤光镊系统中探针制备、 光源、耦合方式等关键技术进行了梳理和对比,总结与展望了不同结构特种芯光纤在光纤光镊中的作用与发展。

  • 图 1常见特种芯光纤横截面示意图

    Figure 1.Cross section diagram of common hetero-core fibers

    图 2特种芯光纤光镊系统组成

    Figure 2.Hetero-core optical fiber tweezers system

    图 3特种芯光纤探针耦合结构示意图。(a)单模光纤直接熔接探针中一芯,耦合后双芯通光;(b)单模光纤直接熔接双芯探针,拉锥熔接区域耦合通光[22];(c)单模光纤错芯熔接多模探针,干涉产生不对称类贝塞尔光束[27];(d)单模错位熔接中空环形芯光纤探针[13];(e)单模光纤纳米探针耦合中空光子晶体光纤[28]

    Figure 3.Schematic diagrams of hetero-core optical fiber probe coupling structures. (a) Single-mode fiber direct fusion probe in one core, and the two-core light is achieved after coupling; (b) single-mode fiber direct fusion dual-core probe, taper welding area coupled through light[22]; (c) single-mode fiber core-offset splicing multimode probe to generate asymmetric Bessel-like beam by interference[27];(d) single-mode dislocation splicing hollow ring core fiber probe[13]; (e) single-mode fiber nanoprobe coupled hollow photonic crystal fiber[28]

    图 4基于多芯结构光纤光镊探针结构。(a)等离子体锥形双芯光纤光镊横截面[19];(b)三芯光学微手结构与涡旋光场场强分布[38];(c)四芯光纤端面显微镜照片,光纤直径150 μm对角纤芯间距65 μm;光纤镊的截面设计;两收敛光束从加工对角纤芯传播的三维示意图,收敛区域球体代表一个被捕获细胞[15]

    Figure 4.Probe structure based on multi-core fiber optical tweezers. (a) Cross section of plasma tapered dual-core optical fiber tweezers[19]; (b) three-core optical micro-hand structure and vortex field intensity distribution[38]; (c) Four-core fiber end face microscope photo, fiber diameter is 150 μm and diagonal core spacing is 65 μm; design of fiber tweezers' cross section; a three-dimensional diagram of two convergent beams propagating from the processing diagonal fiber core. The sphere in the convergent region represents a captured cell[15]

    图 5ACF光纤光镊结构与工作示意图。(a)鸟喙形环形芯光纤探针及微粒受力仿真示意图[44];(b)中空环形芯光纤光镊[13];(c)环形芯光纤截面图像,带二氧化硅微球的环形芯光纤探头图像,暗场光漏斗原理图[14];(d)基于同轴环形双波导的尺寸测量干涉方法示意图,M1为纤维端面,M2为被困微球左侧, MS为微球[45]

    Figure 5.Structure and operating diagram of optical fiber tweezers with ring core structure.(a) Beak-shaped ring-core optic fiber probe and particle force simulation diagram[44]; (b) hollow ring core optical fiber tweezers[13]; (c) cross-section image of annular core fiber, image of annular core fiber probe with silica microspheres, and schematic diagram of dark field optical funnel[14]; (d) schematic diagram of size measurement interference method based on coaxial ring double waveguide.M1is the fiber end face,M2is the left side of the trapped microsphere, and MS is the microsphere[45]

    图 6基于其他结构光纤的光镊探针结构及工作原理。(a)椭圆芯光纤光镊采用LP11模式 旋转酵母细胞[57];(b)多模干涉产生类贝塞尔光束原理示意图;制备全光纤类贝塞尔发生器及其几何参数图像[16]

    Figure 6.The structure and working principle of optical tweezers probe based on other core fiber structures. (a) Elliptical core optical fiber tweezers rotating yeast cells by using LP11mode laser[57]; (b) schematic diagram of the principle of Bessel-like beam generated by multimode interference; fabricated all-fiber Bessel beam generation and its geometric parameters[16]

    表 1特种芯光纤光镊微粒捕获能力汇总

    Table 1.Summary of particle capture abilities of hetero-core optical fiber tweezers

    光镊形式 光纤种类 微粒 折射率 微粒直径(µm) 功能 参考文献
    中空圆台探针 环形芯 聚苯乙烯小球 1.39、1.49、1.59 15、25、35 捕获、收集、输运 [13]
    二氧化硅微球
    集成探针
    环形芯 二氧化硅小球 2.2 6 捕获吸收性微粒 [14]
    对角反射镜探针 四芯 酵母菌细胞
    (椭球形)
    —— 7 捕获 [15]
    类贝塞尔发生器 空心 聚苯乙烯小球 1.55 10 多点位捕获 [16]
    金字塔棱锥探针 七芯 酵母菌细胞
    (椭球形)
    —— 6 捕获位置可调节轴向双向输运 [17]
    光学微手 四芯 酵母菌细胞
    (椭球形)
    —— 4-6 捕获旋转 [18]
    近场等离子激元 双芯 聚苯乙烯小球 1.49 0.01-5 二维捕获 [19]
    近场倏逝波 双芯 聚苯乙烯小球 1.59 2 二维捕获 [20]
    下载: 导出CSV

    表 2常用探针加工方法优缺点对比[21-24]

    Table 2.Comparison of probe processing methods[21-24]

    加工方法 优势 劣势
    研磨抛光法 可加工锥形、楔形、多边金字塔型,或抛光侧面实现反射;
    加工速度快,可重复性高
    对准精度要求高
    光纤蚀刻法 灵活性高、成本低、可重复性高,容易调整锥角 高危险腐蚀剂;表面相对粗糙;难以加工复杂结构
    聚焦离子束铣削 高精度加工,可加工不同角度棱锥或棱柱形 成本高;易受杂质离子干扰;不适于批量生产
    熔融拉锥 操作简便;成本低 可重复性低,不适用批量生产
    光纤端面镀膜 操作简单;能激发表面等离子体效应 易受杂质影响
    加压熔融拉锥 制备具有中空孔光纤探针 可重复性低,不适用批量生产
    下载: 导出CSV
  • [1] ASHKIN A. Trapping of atoms by resonance radiation pressure[J].Physical Review Letters, 1978, 40(12): 729-732.doi:10.1103/PhysRevLett.40.729
    [2] TOKONAMI S. External-field-induced assembly for biological analytical chemistry[J].Analytical Sciences, 2021, 37(3): 395-396.doi:10.2116/analsci.highlights2103
    [3] 蔡宸, 张韫宏. 光镊技术在气溶胶物理化学表征中的应用[J]. 中国光学,2017,10(5):641-655.doi:10.3788/co.20171005.0641

    CAI CH, ZHANG Y H. Application of optical tweezers technology in physical chemistry characterization of aerosol[J].Chinese Optics, 2017, 10(5): 641-655. (in Chinese)doi:10.3788/co.20171005.0641
    [4] STOEV I D, SEELBINDER B, ERBEN E,et al. Highly sensitive force measurements in an optically generated, harmonic hydrodynamic trap[J].eLight, 2021, 1(1): 1-9.
    [5] FILIPPI J, DI GIUSEPPE D, CASTI P,et al. Exploiting spectral information in Opto-Electronic Tweezers for cell classification and drug response evaluation[J].Sensors and Actuators B:Chemical, 2022, 368: 132200.doi:10.1016/j.snb.2022.132200
    [6] GAYATHRI R, KAR S, NAGAI M,et al. Single-cell patterning: a new frontier in bioengineering[J].Materials Today Chemistry, 2022, 26: 101021.doi:10.1016/j.mtchem.2022.101021
    [7] 李银妹, 王浩威, 龚雷. 光镊技术在生命科学研究中的应用现状[J]. 生物学杂志,2019,36(3):1-8.

    LI Y M, WANG H W, GONG L. Current applied researches of optical tweezers in biology[J].Journal of Biology, 2019, 36(3): 1-8. (in Chinese)
    [8] LIU Y, DING H, LI J,et al. Light-driven single-cell rotational adhesion frequency assay[J].elight, 2022, 2(1): 1-11.
    [9] LIU ZH H, SHA CH Y, ZHANG Y,et al. Improved photopolymerization for fabricating fiber optical tweezers[J].Optics Communications, 2022, 508: 127801.doi:10.1016/j.optcom.2021.127801
    [10] LIU CH, LIU ZH H. Design of micro-optical tweezers[J].Proceedings of SPIE, 2011, 8202: 820212.doi:10.1117/12.906996
    [11] LIAO C, XIONG C, ZHAO J,et al. Design and realization of 3D printed fiber-tip microcantilever probes applied to hydrogen sensing[J].Light: Advanced Manufacturing, 2022, 3(1): 3-13.
    [12] SUN X, LEI Z, ZHONG H,et al. A quasi-3D Fano resonance cavity on optical fiber end-facet for high signal-to-noise ratio dip-and-read surface plasmon sensing[J].Light: Advanced Manufacturing, 2022, 3(4): 665-675.
    [13] ZHANG Y, LI Y, ZHANG Y X,et al. HACF-based optical tweezers available for living cells manipulating and sterile transporting[J].Optics Communications, 2018, 427: 563-566.doi:10.1016/j.optcom.2018.07.022
    [14] LIU ZH H, WANG L, ZHANG Y,et al. Optical funnel for living cells trap[J].Optics Communications, 2019, 431: 196-198.doi:10.1016/j.optcom.2018.09.023
    [15] ANASTASIADI G, LEONARD M, PATERSON L,et al. Fabrication and characterization of machined multi-core fiber tweezers for single cell manipulation[J].Optics Express, 2018, 26(3): 3557-3567.doi:10.1364/OE.26.003557
    [16] LEE S R, KIM J, LEE S,et al. All-silica fiber Bessel-like beam generator and its applications in longitudinal optical trapping and transport of multiple dielectric particles[J].Optics Express, 2010, 18(24): 25299-25305.doi:10.1364/OE.18.025299
    [17] TANG X Y, ZHANG Y, ZHANG Y X,et al. All-fiber active tractor beam generator and its application[J].Journal of Lightwave Technology, 2020, 38(6): 1420-1426.doi:10.1109/JLT.2019.2953335
    [18] ZHANG Y, LIU ZH H, YANG J,et al. Four-core optical fiber micro-hand[J].Journal of Lightwave Technology, 2012, 30(10): 1487-1491.doi:10.1109/JLT.2012.2187772
    [19] FOOLADI E, SADEGHI M, ADELPOUR Z,et al. Performance improvement of a plasmonic tapered twin–core fiber optical tweezers[J].Optik, 2021, 245: 167656.doi:10.1016/j.ijleo.2021.167656
    [20] HOU G H, LIU ZH H. The simulation research of multi-core optical fiber near-field optical tweezers[J].Proceedings of SPIE, 2011, 8202: 82020K.
    [21] LIU ZH H, GUO CH K, YANG J,et al. Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application[J].Optics Express, 2006, 14(25): 12510-12516.doi:10.1364/OE.14.012510
    [22] 刘福禄, 张钰民, 孟凡勇, 等. 基于端面镀膜和基底增敏的级联法布里-珀罗光纤温度传感器[J]. 仪器仪表学报,2020,41(11):105-111.

    LIU F L, ZHANG Y M, MENG F Y,et al. Fiber temperature sensor based on the cascaded Fabry-Perot with end face coating and substrate sensitization[J].Chinese Journal of Scientific Instrument, 2020, 41(11): 105-111. (in Chinese)
    [23] 贺健康, 张立超, 才玺坤, 等. 离子束溅射制备GdF3光学薄膜沉积速率分布特性[J]. 中国光学,2016,9(3):356-363.doi:10.3788/co.20160903.0356

    HE J K, ZHANG L CH, CAI X K,et al. Deposition rate distribution of GdF3optical coating prepared by ion beam sputtering[J].Chinese Optics, 2016, 9(3): 356-363. (in Chinese)doi:10.3788/co.20160903.0356
    [24] 宁哲达, 王一晴, 陈天天, 等. 磁控溅射沉积银薄膜/涂层的研究进展[J]. 稀有金属材料与工程,2022,51(12):4773-4782.

    NING ZH D, WANG Y Q, CHEN T T,et al. Research progress of silver films/coatings deposited by magnetron sputtering[J].Rare Metal Materials and Engineering, 2022, 51(12): 4773-4782. (in Chinese)
    [25] ZHANG X T, YUAN T T, YUAN Y G,et al. Twin-core fiber end polish technique for particle trapping[J].Proceedings of SPIE, 2015, 9655: 96551V.
    [26] YUAN L B, LIU ZH H, YANG J,et al. Two-beam optical tweezers built by a two-core fiber[J].Proceedings of SPIE, 2008, 7004: 70040R.doi:10.1117/12.785205
    [27] LIU ZH H, ZHANG Y X, ZHANG Y,et al.. All-fiber self-accelerating Bessel-like beam for optical trapping application[C].Optics and the Brain 2015, Optica Publishing Group, 2015: JT3A. 2.
    [28] XIE S, PENNETTA R, RUSSELL P S J. Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber[J].Optica, 2016, 3(3): 277-282.doi:10.1364/OPTICA.3.000277
    [29] GHARAATI A R, ELAHI P, JAFARI M. Calculation of temperature distribution in eccentric multi core diode pumped fiber lasers by green function method[J].Acta Physica Polonica A, 2009, 116(4): 566-569.doi:10.12693/APhysPolA.116.566
    [30] 孙林, 刘宁, 蔡轶, 等. 多芯光纤通信海缆的能效理论及系统参数优化[J]. 光学学报,2022,42(15):1506005.doi:10.3788/AOS202242.1506005

    SUN L, LIU N, CAI Y,et al. Power efficiency theory and system parameter optimization for multicore fiber-based submarine cables[J].Acta Optica Sinica, 2022, 42(15): 1506005. (in Chinese)doi:10.3788/AOS202242.1506005
    [31] MORANT M, LLORENTE R. Performance analysis of carrier-aggregated multiantenna 4 × 4 MIMO LTE-A fronthaul by spatial multiplexing on multicore fiber[J].Journal of Lightwave Technology, 2018, 36(2): 594-600.doi:10.1109/JLT.2017.2786582
    [32] MACHO A, MORANT M, LLORENTE R. Experimental evaluation of nonlinear crosstalk in multi-core fiber[J].Optics Express, 2015, 23(14): 18712-18720.doi:10.1364/OE.23.018712
    [33] 刘建霞, 薛丽, 陈宫傣, 等. 偏心光纤倏逝场传感灵敏度的研究[J]. 与光电子学进展,2016,53(7):071301.

    LIU J X, XUE L, CHEN G D,et al. Sensitivity of evanescent field sensors based on eccentric core optical fiber[J].Laser&Optoelectronics Progress, 2016, 53(7): 071301. (in Chinese)
    [34] 张世达, 耿乙迦. 碲化铋倏逝场锁模器件的超快光纤 器[J]. 中国光学,2022,15(3):433-442.doi:10.37188/CO.2021-0216

    ZHANG SH D, GENG Y J. Ultrafast fiber laser based on bismuth telluride evanescent field mode-locked device[J].Chinese Optics, 2022, 15(3): 433-442. (in Chinese)doi:10.37188/CO.2021-0216
    [35] LIU J X, YUAN L B. Evanescent field characteristics of eccentric core optical fiber for distributed sensing[J].Journal of the Optical Society of America A, 2014, 31(3): 475-479.doi:10.1364/JOSAA.31.000475
    [36] BOULOUMIS T D, NIC CHORMAIC S. From far-field to near-field micro- and nanoparticle optical trapping[J].Applied Sciences, 2020, 10(4): 1375.doi:10.3390/app10041375
    [37] LEITZ K H, QUENTIN U, ALEXEEV I,et al. Process investigations of optical trap assisted direct-write microsphere near-field nanostructuring[J].CIRP Annals, 2012, 61(1): 207-210.doi:10.1016/j.cirp.2012.03.047
    [38] 苑立波. 纤端光操纵: 光镊·光手·光枪[J]. 光学与光电技术,2020,18(2):1-6.

    YUAN L B. Specialty optical fibers for micro particle manipulation: optical tweezers, hands and gun[J].Optics&Optoelectronic Technology, 2020, 18(2): 1-6. (in Chinese)
    [39] 马光辉, 于贺, 刘宇乾, 等. 金属纳米表面等离子激元的共振辐射增强研究[J]. 与光电子学进展,2018,55(4):042601.

    MA G H, YU H, LIU Y Q,et al. Resonance radiation enhancement of metal nanometer surface plasmons[J].Laser&Optoelectronics Progress, 2018, 55(4): 042601. (in Chinese)
    [40] LV S J, DU Y P, WU F T,et al. Review on LSPR assisted photocatalysis: effects of physical fields and opportunities in multifield decoupling[J].Nanoscale Advances, 2022, 4(12): 2608-2631.doi:10.1039/D2NA00140C
    [41] TANDON B, AGRAWAL A, HEO S,et al. Competition between depletion effects and coupling in the Plasmon modulation of doped metal oxide nanocrystals[J].Nano Letters, 2019, 19(3): 2012-2019.doi:10.1021/acs.nanolett.9b00079
    [42] PELLAS V, HU D, MAZOUZI Y,et al. Gold nanorods for LSPR biosensing: synthesis, coating by silica, and bioanalytical applications[J].Biosensors, 2020, 10(10): 146.doi:10.3390/bios10100146
    [43] LIBERALE C, MINZIONI P, CRISTIANI I. All optical 3-D trapping through a single-fiber tweezer[C].The European Conference on Lasers and Electro-Optics, Optica Publishing Group, 2007: CL2_2.
    [44] 申泽, 成煜, 邓洪昌, 等. 鸟喙形环形芯光纤光镊粒子捕获受力分析[J]. 光学学报,2021,41(18):1808001.doi:10.3788/AOS202141.1808001

    SHEN Z, CHENG Y, DENG H CH,et al. Analysis of trapping force of beak-shaped optical tweezers with annular core fibers for particles[J].Acta Optica Sinica, 2021, 41(18): 1808001. (in Chinese)doi:10.3788/AOS202141.1808001
    [45] LIU ZH H, WANG L, ZHANG Y,et al. Particle size measurement using a fibre-trap-based interference approach[J].Optics Communications, 2020, 471: 125839.doi:10.1016/j.optcom.2020.125839
    [46] 张乃倩, 方群. 基于微流控系统的单细胞代谢物分析技术的研究进展[J]. 分析化学,2021,49(11):1779-1791.

    ZHANG N Q, FANG Q. Progress of single-cell metabolite analysis technology based on microfluidic system[J].Chinese Journal of Analytical Chemistry, 2021, 49(11): 1779-1791. (in Chinese)
    [47] 李钢敏, 李致远, 李正冉, 等. 基于表面等离子体共振的高灵敏度光纤微流控芯片[J]. 中国 ,2021,48(1):0106002.doi:10.3788/CJL202148.0106002

    LI G M, LI ZH Y, LI ZH R,et al. High-sensitivity optical-fiber microfluidic chip based on surface Plasmon resonance[J].Chinese Journal of Lasers, 2021, 48(1): 0106002. (in Chinese)doi:10.3788/CJL202148.0106002
    [48] ZHAI J, YI SH H, JIA Y W,et al. Cell-based drug screening on microfluidics[J].TrAC Trends in Analytical Chemistry, 2019, 117: 231-241.doi:10.1016/j.trac.2019.05.018
    [49] 王志乐, 王著元, 宗慎飞, 等. 微流控SERS芯片及其生物传感应用[J]. 中国光学,2018,11(3):513-530.doi:10.3788/co.20181103.0513

    WANG ZH L, WANG ZH Y, ZONG SH F,et al. Microfluidic SERS chip and its biosensing applications[J].Chinese Optics, 2018, 11(3): 513-530. (in Chinese)doi:10.3788/co.20181103.0513
    [50] FALLAHI H, ZHANG J, PHAN H P,et al. Flexible microfluidics: fundamentals, recent developments, and applications[J].Micromachines, 2019, 10(12): 830.doi:10.3390/mi10120830
    [51] KRITZINGER A, FORBES A, FORBES P B C. Optical trapping and fluorescence control with vectorial structured light[J].Scientific Reports, 2022, 12(1): 17690.doi:10.1038/s41598-022-21224-1
    [52] PAN X J, WU J Y, LI ZH L,et al. Laguerre-Gaussian mode purity of Gaussian vortex beams[J].Optik, 2021, 230: 166320.doi:10.1016/j.ijleo.2021.166320
    [53] KHONINA S N, STRILETZ A S, KOVALEV A A,et al. Propagation of laser vortex beams in a parabolic optical fiber[J].Proceedings of SPIE, 2010, 7523: 75230B.
    [54] WANG J H, CHEN R SH, YAO J N,et al. Random distributed feedback fiber laser generating cylindrical vector beams[J].Physical Review Applied, 2019, 11(4): 044051.doi:10.1103/PhysRevApplied.11.044051
    [55] LIU ZH H, WANG L, LIANG P B,et al. Mode division multiplexing technology for single-fiber optical trapping axial-position adjustment[J].Optics Letters, 2013, 38(14): 2617-2620.doi:10.1364/OL.38.002617
    [56] WU H, JIANG CH L, REN A N,et al. Single-fiber optical tweezers for particle trapping and axial reciprocating motion using dual wavelength and dual mode[J].Optics Communications, 2022, 517: 128333.doi:10.1016/j.optcom.2022.128333
    [57] ZHANG Y, ZHAO L, CHEN Y H,et al. Single optical tweezers based on elliptical core fiber[J].Optics Communications, 2016, 365: 103-107.doi:10.1016/j.optcom.2015.11.076
  • 加载中
图(6)/ 表(2)
计量
  • 文章访问数:212
  • HTML全文浏览量:135
  • PDF下载量:134
  • 被引次数:0
出版历程
  • 收稿日期:2023-01-12
  • 修回日期:2023-02-20
  • 网络出版日期:2023-05-16

目录

    /

      返回文章
      返回
        Baidu
        map