Design and achievement of a device for high-precision ammonia gas detection based on laser spectroscopy
-
摘要:
氨气排放会对环境以及人体健康造成危害,因此对环境中氨气浓度的高精度监测显得尤为重要。本文基于具有高灵敏度、高响应速度等优点的离轴积分腔输出光谱技术(OA-ICOS)对氨气高精度检测装置进行设计。使用基长30 cm装有反射率为99.99%的高反镜的光学谐振腔作为气体吸收池,实现了近3000 m的光程,将中心波长为1528 nm的分布反馈式 器(DFB)调谐至6548.611 cm−1和6548.798 cm−1附近,在常温18.6 kPa的气压下对1×10−5~5×10−5范围内NH3进行了检测。测量结果表明NH3浓度与信号幅值的线性拟合度
R 2可达0.99979。使用Allan方差对实验数据进行分析得到13 s后系统的平均检测极限为9.8×10−9,在103 s时系统的最低检测极限可达7×10−9(S /N ~1)。实验结果表明,该检测装置具有良好的稳定性与高灵敏度,满足对氨气高精度检测的需求,本文研究为国内自主研发痕量气体高精度检测设备提供了技术经验。Abstract:Ammonia emission will cause harm to the environment and human health, so it is particularly important that the ammonia concentrations are measured with high precision. Off-Axis Integrating Cavity Output Spectroscopy (OA-ICOS), which has the advantages of high sensitivity and high response speed, is used to design a high-precision ammonia detection device. The gas absorption cell is composed of two high reflection mirrors with a reflectivity of 99.99%, and the base length of the optical resonator is 30 cm. Finally, an optical path of nearly 3000 m was realized. The Distributed Feedback Laser (DFB) with a central wavelength of 1528 nm is tuned to 6548.611 cm−1and 6548.798 cm−1. The concentration of NH3is changed from 1×10−5to 5×10−5and is detected under an atmospheric pressure of 18.6 kPa at room temperature. The measurement results show that the linear fit
R 2between NH3concentration and signal amplitude can reach 0.99979. The Allan variance is used to analyze the experimental data, and the minimum detection limit of the system can reach 7×10−9at 103 s. The experimental results show that the detection device has good stability and high sensitivity, meets the demand for the high-precision detection of ammonia gas, and also provides technical experience for the domestic independent research and development of high-precision detection equipment for trace gases. -
表 1各检测方法对比表
Table 1.Comparison table of various detection methods
序号 研究者 检测方法 吸收线位置
(cm−1)吸收线强
(cm/mol)光程
(m)检测极限
(1×10−6)1 Claps[11] VOAS 6528.76 1.1741×10−21 36 0.7 2 Miller[12] WMS 1103.44 1.5141×10−19 60 0.0002 3 Guo[13] WMS 2f/1f 6599.9 1.3871×10−21 15 0.16 4 Baer[15] OA-ICOS 6528.9 1.350×10−21 5035 0.002 5 Jia[16] OA-ICOS&
WMS6528.76 1.174×10−21 115.4 0.274 6 Our work OA-ICOS 6548.61 1.879×10−21 3000 0.007 6548.79 1.847×10−21 注:VOAS (Vibrational overtone absorption spectroscopy); WMS (Wavelength modulation spectroscopy); OA-ICOS (Off-axis integrated cavity output spectroscopy). -
[1] 赵琳, 刘庆岭, 周伟, 等. 工业烟气脱硝技术国内外研究进展[J]. 化学试剂,2021,43(6):747-756.ZHAO L, LIU Q L, ZHOU W,et al. Research progress of industrial flue gas denitrification technology[J].Chemical Reagents, 2021, 43(6): 747-756. (in Chinese) [2] LI SH W, CHANG M H, LI H M,et al. Chemical compositions and source apportionment of PM2.5during clear and hazy days: seasonal changes and impacts of Youth Olympic Games[J].Chemosphere, 2020, 256: 127163.doi:10.1016/j.chemosphere.2020.127163 [3] 李星国. 氢能的发展机遇与面临的挑战[J]. 应用化学,2022,39(7):1157-1166.LI X G. Development opportunities and challenges of hydrogen energy[J].Chinese Journal of Applied Chemistry, 2022, 39(7): 1157-1166. (in Chinese) [4] 程军杰, 曹智, 杨灿然, 等. 便携式远程 诱导击穿光谱系统及其定量分析性能[J]. 应用化学,2022,39(9):1447-1452.CHENG J J, CAO ZH, YANG C R,et al. Quantitative analysis with a portable remote laser-induced breakdown spectroscopy system[J].Chinese Journal of Applied Chemistry, 2022, 39(9): 1447-1452. (in Chinese) [5] 唐连波, 付大友, 陈琦, 等. 碳量子点增强气液相化学发光检测二氧化碳[J]. 应用化学,2022,39(8):1294-1302.TANG L B, FU D Y, CHEN Q,et al. Enhanced gas-liquid chemiluminescence by carbon dots for determination of carbon dioxide[J].Chinese Journal of Applied Chemistry, 2022, 39(8): 1294-1302. (in Chinese) [6] 王磊, 宦克为, 刘小溪, 等. 基于卷积神经网络的近红外光谱全流程分析模型研究[J]. 分析化学,2022,50(12):1918-1926.WANG L, HUAN K W, LIU X X,et al. Full-range analysis model of near infrared spectroscopy based on convolutional neural network[J].Chinese Journal of Analytical Chemistry, 2022, 50(12): 1918-1926. (in Chinese) [7] 李岩, 祁昱, 李赫. 拉曼光谱在感染性疾病诊断中的应用进展[J]. 分析化学,2022,50(3):317-326.LI Y, QI Y, LI H. Advances of Raman spectroscopy in diagnosis of infectious diseases[J].Chinese Journal of Analytical Chemistry, 2022, 50(3): 317-326. (in Chinese) [8] 黄慧, 周亦辰, 彭宇, 等. 基于量子级联 器中红外光谱技术的幽门螺旋杆菌呼气诊断的可行性研究[J]. 分析化学,2022,50(9):1328-1335.HUANG H, ZHOU Y CH, PENG Y,et al. Feasibility study of breath diagnosis inHelicobacter pyloribased on quantum cascade laser mid-infrared spectroscopy[J].Chinese Journal of Analytical Chemistry, 2022, 50(9): 1328-1335. (in Chinese) [9] POGÁNY A, WAGNER S, WERHAHN O,et al. Development and metrological characterization of a Tunable Diode Laser Absorption Spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor[J].Applied Spectroscopy, 2015, 69(2): 257-268.doi:10.1366/14-07575 [10] DONG L, TITTEL F K, LI CH G,et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing[J].Optics Express, 2016, 24(6): A528-A535.doi:10.1364/OE.24.00A528 [11] 朱宝余, 孙成勋, 王兰, 等. 氨气检测仪研究现状[J]. 化工进展,2017,36(S1):27-33.ZHU B Y, SUN CH X, WANG L,et al. Research status of ammonia gas detector[J].Chemical Industry and Engineering Progress, 2017, 36(S1): 27-33. (in Chinese) [12] FENG SH L, QIU X B, GUO G Q,et al. Palm-sized laser spectrometer with high robustness and sensitivity for trace gas detection using a novel double-layer toroidal cell[J].Analytical Chemistry, 2021, 93(10): 4552-4558.doi:10.1021/acs.analchem.0c04995 [13] SHAO L G, CHEN J J, WANG K Y,et al. Highly precise measurement of atmospheric N2O and CO using improved White cell and RF current perturbation[J].Sensors and Actuators B:Chemical, 2022, 352: 130995.doi:10.1016/j.snb.2021.130995 [14] ZHANG L W, PANG T, ZHANG Z R,et al. A novel compact intrinsic safety full range Methane microprobe sensor using "trans-world" processing method based on near-infrared spectroscopy[J].Sensors and Actuators B:Chemical, 2021, 334: 129680.doi:10.1016/j.snb.2021.129680 [15] GUO Y CH, QIU X B, LI N,et al. A portable laser-based sensor for detecting H2S in domestic natural gas[J].Infrared Physics&Technology, 2020, 105: 103153. [16] TIAN J F, ZHAO G, FLEISHER A J,et al. Optical feedback linear cavity enhanced absorption spectroscopy[J].Optics Express, 2021, 29(17): 26831-26840.doi:10.1364/OE.431934 [17] CLAPS R, ENGLICH F V, LELEUX D P,et al. Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy[J].Applied Optics, 2001, 40(24): 4387-4394.doi:10.1364/AO.40.004387 [18] MILLER D J, SUN K, TAO L,et al. Open-path, quantum cascade-laser-based sensor for high-resolution atmospheric ammonia measurements[J].Atmospheric Measurement Techniques, 2014, 7(1): 81-93.doi:10.5194/amt-7-81-2014 [19] GUO X Q, ZHENG F, LI CH L,et al. A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy[J].Optics and Lasers in Engineering, 2019, 115: 243-248.doi:10.1016/j.optlaseng.2018.12.005 [20] TELFAH H, PAUL A C, LIU J J. Aligning an optical cavity: with reference to cavity ring-down spectroscopy[J].Applied Optics, 2020, 59(30): 9464-9468.doi:10.1364/AO.405189 [21] BAER D S, PAUL J B, GUPTA M,et al. Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy[J].Applied Physics B, 2002, 75(2-3): 261-265.doi:10.1007/s00340-002-0971-z [22] 贾慧, 郭晓勇, 蔡廷栋, 等. 1.531μm附近NH3分子痕量探测[J]. 光谱学与光谱分析,2009,29(12):3173-3176.doi:10.3964/j.issn.1000-0593(2009)12-3173-04JIA H, GUO X Y, CAI T D,et al. Trace detection of ammonia at 1.531 μm[J].Spectroscopy and Spectral Analysis, 2009, 29(12): 3173-3176. (in Chinese)doi:10.3964/j.issn.1000-0593(2009)12-3173-04 [23] 王坤阳. 基于离轴积分腔光谱大气CO2和CH4高精度测量技术研究[D]. 合肥: 中国科学技术大学, 2021.WANG K Y. In-site measurement of CO2and CH4in atmosphere using off-axis integrated cavity spectroscopy[D]. Hefei: University of Science and Technology of China, 2021. (in Chinese) [24] FIEDLER S E, HESE A, RUTH A A. Incoherent broad-band cavity-enhanced absorption spectroscopy[J].Chemical Physics Letters, 2003, 371(3-4): 284-294.doi:10.1016/S0009-2614(03)00263-X [25] 袁子豪, 黄印博, 钟磬, 等. V形结构离轴积分腔吸收光谱测量装置设计与研究[J]. 中国 ,2023,50(18):1811001.YUAN Z H, HUANG Y B, ZHONG Q,et al. Design and study of V-shaped structure off-axis integrated cavity absorption spectroscopy[J].Chinese Journal of Lasers, 2023, 50(18): 1811001. (in Chinese)