留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氨气高精度 光谱检测装置的设计及实现

杨天悦,宫廷,郭古青,孙小聪,田亚莉,邱选兵,何秋生,高晓明,李传亮

downloadPDF
杨天悦, 宫廷, 郭古青, 孙小聪, 田亚莉, 邱选兵, 何秋生, 高晓明, 李传亮. 氨气高精度 光谱检测装置的设计及实现[J]. , 2023, 16(5): 1129-1136. doi: 10.37188/CO.2023-0023
引用本文: 杨天悦, 宫廷, 郭古青, 孙小聪, 田亚莉, 邱选兵, 何秋生, 高晓明, 李传亮. 氨气高精度 光谱检测装置的设计及实现[J]. , 2023, 16(5): 1129-1136.doi:10.37188/CO.2023-0023
YANG Tian-yue, GONG Ting, GUO Gu-qing, SUN Xiao-cong, TIAN Ya-li, QIU Xuan-bing, HE Qiu-sheng, GAO Xiao-ming, LI Chuan-liang. Design and achievement of a device for high-precision ammonia gas detection based on laser spectroscopy[J]. Chinese Optics, 2023, 16(5): 1129-1136. doi: 10.37188/CO.2023-0023
Citation: YANG Tian-yue, GONG Ting, GUO Gu-qing, SUN Xiao-cong, TIAN Ya-li, QIU Xuan-bing, HE Qiu-sheng, GAO Xiao-ming, LI Chuan-liang. Design and achievement of a device for high-precision ammonia gas detection based on laser spectroscopy[J].Chinese Optics, 2023, 16(5): 1129-1136.doi:10.37188/CO.2023-0023

氨气高精度 光谱检测装置的设计及实现

doi:10.37188/CO.2023-0023
基金项目:国家自然科学基金(No. U1810129,No. 52076145,No. 12304403);山西省留学人员科技活动项目(No. 20230031);山西省省筹资金资助回国留学人员科研资助项目(No. 2023-151);山西省基础研究计划(No. 202203021222204);太原科技大学科研启动基金(No. 20222008,No. 20222132);山西省科技成果转化引导专项项目(No. 201904D131025)
详细信息
    作者简介:

    杨天悦(1997—),男,天津人,硕士研究生,2020年于太原科技大学获得学士学位,主要从事 光谱学及应用等方面的研究。E-mail:1330944702@qq.com

    宫 廷(1992—),女,山西忻州人,博士,讲师,硕士生导师,主要从事 光谱学及应用等方面的研究。E-mail:gongting@tyust.edu.cn

    郭古青(1986—),男,山西阳泉人,博士,副教授,硕士生导师,主要从事新型材料表征方法的研究。E-mail:2016035@tyust.edu.cn

    孙小聪(1996—),女,山西运城人,博士,讲师,主要从事量子光学等方面的研究。E-mail:sunxiaocong@tyust.edu.cn

    田亚莉(1991—),女,山西吕梁人,博士,讲师,主要从事原子与分子物理方面的研究。E-mail:tianyali@tyust.edu.cn

    邱选兵(1980—),男,四川内江人,博士,教授,博士生导师,主要从事 光谱技术、嵌入式系统的研究。E-mail:qiuxb@tyust.edu.cn

    何秋生(1977—),男,山西介休人,博士,教授,博士生导师,主要从事有机污染物相关的大气环境、大气化学和污染修复研究。E-mail:heqs@tyust.edu.cn

    高晓明(1965—),男,安徽南陵人,博士,研究员,博士生导师,主要从事高灵敏度光谱检测技术及应用的研究。E-mail:xmgao@aiofm.ac.cn

    李传亮(1983—),男,山东沂源人,博士,教授,博士生导师,2011年于华东师范大学获得博士学位,主要从事 光谱学及应用、光电传感装备的研究。E-mail:clli@tyust.edu.cn

  • 中图分类号:O433.5+1

Design and achievement of a device for high-precision ammonia gas detection based on laser spectroscopy

Funds:Supported by National Natural Science Foundation of China (No. U1810129, No. 52076145, No. 12304403); Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (No. 20230031); Shanxi Scholarship Council of China (No.2023-151); Fundamental Research Program of Shanxi Province (No. 202203021222204); Taiyuan University of Science and Technology Scientific Research Initial Funding (No. 20222008, No. 20222132); Transformation of Scientific and Technological Achievements Fund of Shanxi Province (No. 201904D131025)
More Information
  • 摘要:

    氨气排放会对环境以及人体健康造成危害,因此对环境中氨气浓度的高精度监测显得尤为重要。本文基于具有高灵敏度、高响应速度等优点的离轴积分腔输出光谱技术(OA-ICOS)对氨气高精度检测装置进行设计。使用基长30 cm装有反射率为99.99%的高反镜的光学谐振腔作为气体吸收池,实现了近3000 m的光程,将中心波长为1528 nm的分布反馈式 器(DFB)调谐至6548.611 cm−1和6548.798 cm−1附近,在常温18.6 kPa的气压下对1×10−5~5×10−5范围内NH3进行了检测。测量结果表明NH3浓度与信号幅值的线性拟合度 R 2可达0.99979。使用Allan方差对实验数据进行分析得到13 s后系统的平均检测极限为9.8×10−9,在103 s时系统的最低检测极限可达7×10−9 S / N ~1)。实验结果表明,该检测装置具有良好的稳定性与高灵敏度,满足对氨气高精度检测的需求,本文研究为国内自主研发痕量气体高精度检测设备提供了技术经验。

  • 图 1(a)检测装置原理图及(b)谐振腔结构示意图

    Figure 1.(a) Schematic diagram of detection device and (b) schematic diagram of resonator structure

    图 2检测装置实物图

    Figure 2.Detection device diagram

    图 3(a)体积分数为1×10−5NH3吸收信号及(b)去除背景信号后的NH3吸收信号

    Figure 3.(a)NH3absorption signal with volume fraction of 1×10−5; (b) NH3absorption signal after removing background signal

    图 4不同浓度下的NH3测量信号

    Figure 4.Measured NH3signals at different concentrations

    图 5NH3浓度与NH3吸收信号幅度间的线性关系

    Figure 5.Linear relationship between the real concentrations and the fitted ones of NH3absorption signal

    图 6(a)体积分数为1×10−5的NH3测量2000 s的原始数据及(b)Allan方差分析图

    Figure 6.(a) Row data of NH3with concentration of 1×10−5over 2000 s; (b) Allan variance as a function of integration time

    图 7体积分数为1×10−5NH3标准气体的检测浓度分布图,红线为高斯函数拟合结果

    Figure 7.Detection concentration distribution diagram of NH3standard gas with concentration of 1×10−5. The red line is a Gaussian profile fitting

    表 1各检测方法对比表

    Table 1.Comparison table of various detection methods

    序号 研究者 检测方法 吸收线位置
    (cm−1)
    吸收线强
    (cm/mol)
    光程
    (m)
    检测极限
    (1×10−6
    1 Claps[11] VOAS 6528.76 1.1741×10−21 36 0.7
    2 Miller[12] WMS 1103.44 1.5141×10−19 60 0.0002
    3 Guo[13] WMS 2f/1f 6599.9 1.3871×10−21 15 0.16
    4 Baer[15] OA-ICOS 6528.9 1.350×10−21 5035 0.002
    5 Jia[16] OA-ICOS&
    WMS
    6528.76 1.174×10−21 115.4 0.274
    6 Our work OA-ICOS 6548.61 1.879×10−21 3000 0.007
    6548.79 1.847×10−21
    注:VOAS (Vibrational overtone absorption spectroscopy); WMS (Wavelength modulation spectroscopy); OA-ICOS (Off-axis integrated cavity output spectroscopy).
    下载: 导出CSV
  • [1] 赵琳, 刘庆岭, 周伟, 等. 工业烟气脱硝技术国内外研究进展[J]. 化学试剂,2021,43(6):747-756.

    ZHAO L, LIU Q L, ZHOU W,et al. Research progress of industrial flue gas denitrification technology[J].Chemical Reagents, 2021, 43(6): 747-756. (in Chinese)
    [2] LI SH W, CHANG M H, LI H M,et al. Chemical compositions and source apportionment of PM2.5during clear and hazy days: seasonal changes and impacts of Youth Olympic Games[J].Chemosphere, 2020, 256: 127163.doi:10.1016/j.chemosphere.2020.127163
    [3] 李星国. 氢能的发展机遇与面临的挑战[J]. 应用化学,2022,39(7):1157-1166.

    LI X G. Development opportunities and challenges of hydrogen energy[J].Chinese Journal of Applied Chemistry, 2022, 39(7): 1157-1166. (in Chinese)
    [4] 程军杰, 曹智, 杨灿然, 等. 便携式远程 诱导击穿光谱系统及其定量分析性能[J]. 应用化学,2022,39(9):1447-1452.

    CHENG J J, CAO ZH, YANG C R,et al. Quantitative analysis with a portable remote laser-induced breakdown spectroscopy system[J].Chinese Journal of Applied Chemistry, 2022, 39(9): 1447-1452. (in Chinese)
    [5] 唐连波, 付大友, 陈琦, 等. 碳量子点增强气液相化学发光检测二氧化碳[J]. 应用化学,2022,39(8):1294-1302.

    TANG L B, FU D Y, CHEN Q,et al. Enhanced gas-liquid chemiluminescence by carbon dots for determination of carbon dioxide[J].Chinese Journal of Applied Chemistry, 2022, 39(8): 1294-1302. (in Chinese)
    [6] 王磊, 宦克为, 刘小溪, 等. 基于卷积神经网络的近红外光谱全流程分析模型研究[J]. 分析化学,2022,50(12):1918-1926.

    WANG L, HUAN K W, LIU X X,et al. Full-range analysis model of near infrared spectroscopy based on convolutional neural network[J].Chinese Journal of Analytical Chemistry, 2022, 50(12): 1918-1926. (in Chinese)
    [7] 李岩, 祁昱, 李赫. 拉曼光谱在感染性疾病诊断中的应用进展[J]. 分析化学,2022,50(3):317-326.

    LI Y, QI Y, LI H. Advances of Raman spectroscopy in diagnosis of infectious diseases[J].Chinese Journal of Analytical Chemistry, 2022, 50(3): 317-326. (in Chinese)
    [8] 黄慧, 周亦辰, 彭宇, 等. 基于量子级联 器中红外光谱技术的幽门螺旋杆菌呼气诊断的可行性研究[J]. 分析化学,2022,50(9):1328-1335.

    HUANG H, ZHOU Y CH, PENG Y,et al. Feasibility study of breath diagnosis inHelicobacter pyloribased on quantum cascade laser mid-infrared spectroscopy[J].Chinese Journal of Analytical Chemistry, 2022, 50(9): 1328-1335. (in Chinese)
    [9] POGÁNY A, WAGNER S, WERHAHN O,et al. Development and metrological characterization of a Tunable Diode Laser Absorption Spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor[J].Applied Spectroscopy, 2015, 69(2): 257-268.doi:10.1366/14-07575
    [10] DONG L, TITTEL F K, LI CH G,et al. Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing[J].Optics Express, 2016, 24(6): A528-A535.doi:10.1364/OE.24.00A528
    [11] 朱宝余, 孙成勋, 王兰, 等. 氨气检测仪研究现状[J]. 化工进展,2017,36(S1):27-33.

    ZHU B Y, SUN CH X, WANG L,et al. Research status of ammonia gas detector[J].Chemical Industry and Engineering Progress, 2017, 36(S1): 27-33. (in Chinese)
    [12] FENG SH L, QIU X B, GUO G Q,et al. Palm-sized laser spectrometer with high robustness and sensitivity for trace gas detection using a novel double-layer toroidal cell[J].Analytical Chemistry, 2021, 93(10): 4552-4558.doi:10.1021/acs.analchem.0c04995
    [13] SHAO L G, CHEN J J, WANG K Y,et al. Highly precise measurement of atmospheric N2O and CO using improved White cell and RF current perturbation[J].Sensors and Actuators B:Chemical, 2022, 352: 130995.doi:10.1016/j.snb.2021.130995
    [14] ZHANG L W, PANG T, ZHANG Z R,et al. A novel compact intrinsic safety full range Methane microprobe sensor using "trans-world" processing method based on near-infrared spectroscopy[J].Sensors and Actuators B:Chemical, 2021, 334: 129680.doi:10.1016/j.snb.2021.129680
    [15] GUO Y CH, QIU X B, LI N,et al. A portable laser-based sensor for detecting H2S in domestic natural gas[J].Infrared Physics&Technology, 2020, 105: 103153.
    [16] TIAN J F, ZHAO G, FLEISHER A J,et al. Optical feedback linear cavity enhanced absorption spectroscopy[J].Optics Express, 2021, 29(17): 26831-26840.doi:10.1364/OE.431934
    [17] CLAPS R, ENGLICH F V, LELEUX D P,et al. Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy[J].Applied Optics, 2001, 40(24): 4387-4394.doi:10.1364/AO.40.004387
    [18] MILLER D J, SUN K, TAO L,et al. Open-path, quantum cascade-laser-based sensor for high-resolution atmospheric ammonia measurements[J].Atmospheric Measurement Techniques, 2014, 7(1): 81-93.doi:10.5194/amt-7-81-2014
    [19] GUO X Q, ZHENG F, LI CH L,et al. A portable sensor for in-situ measurement of ammonia based on near-infrared laser absorption spectroscopy[J].Optics and Lasers in Engineering, 2019, 115: 243-248.doi:10.1016/j.optlaseng.2018.12.005
    [20] TELFAH H, PAUL A C, LIU J J. Aligning an optical cavity: with reference to cavity ring-down spectroscopy[J].Applied Optics, 2020, 59(30): 9464-9468.doi:10.1364/AO.405189
    [21] BAER D S, PAUL J B, GUPTA M,et al. Sensitive absorption measurements in the near-infrared region using off-axis integrated-cavity-output spectroscopy[J].Applied Physics B, 2002, 75(2-3): 261-265.doi:10.1007/s00340-002-0971-z
    [22] 贾慧, 郭晓勇, 蔡廷栋, 等. 1.531μm附近NH3分子痕量探测[J]. 光谱学与光谱分析,2009,29(12):3173-3176.doi:10.3964/j.issn.1000-0593(2009)12-3173-04

    JIA H, GUO X Y, CAI T D,et al. Trace detection of ammonia at 1.531 μm[J].Spectroscopy and Spectral Analysis, 2009, 29(12): 3173-3176. (in Chinese)doi:10.3964/j.issn.1000-0593(2009)12-3173-04
    [23] 王坤阳. 基于离轴积分腔光谱大气CO2和CH4高精度测量技术研究[D]. 合肥: 中国科学技术大学, 2021.

    WANG K Y. In-site measurement of CO2and CH4in atmosphere using off-axis integrated cavity spectroscopy[D]. Hefei: University of Science and Technology of China, 2021. (in Chinese)
    [24] FIEDLER S E, HESE A, RUTH A A. Incoherent broad-band cavity-enhanced absorption spectroscopy[J].Chemical Physics Letters, 2003, 371(3-4): 284-294.doi:10.1016/S0009-2614(03)00263-X
    [25] 袁子豪, 黄印博, 钟磬, 等. V形结构离轴积分腔吸收光谱测量装置设计与研究[J]. 中国 ,2023,50(18):1811001.

    YUAN Z H, HUANG Y B, ZHONG Q,et al. Design and study of V-shaped structure off-axis integrated cavity absorption spectroscopy[J].Chinese Journal of Lasers, 2023, 50(18): 1811001. (in Chinese)
  • 加载中
图(7)/ 表(1)
计量
  • 文章访问数:233
  • HTML全文浏览量:84
  • PDF下载量:172
  • 被引次数:0
出版历程
  • 收稿日期:2023-02-04
  • 录用日期:2023-04-13
  • 修回日期:2023-02-24
  • 网络出版日期:2023-04-13

目录

    /

      返回文章
      返回
        Baidu
        map