-
摘要:
变形光学系统具有双平面对称性,其在两个对称面内的焦距不同。利用变形光学系统能够在使用常规尺寸传感器的情况下获得更宽的视场。本文根据变形光学系统的一阶像差特性,提出了一种设计折反式变形光学系统的方法。使用双锥面(Biconic Surface)面型设计了一个折反式变形光学系统。系统在
${{XOZ}}$ 面内的焦距为500 mm,在${{YOZ}}$ 对称面内的焦距为1000 mm。系统F-number为10,全视场角为1°×1°。系统在80 lp/mm处的全视场调制传递函数均值高于0.3。系统整体结构紧凑,成像质量良好。Abstract:The anamorphic optical system has a two-plane symmetry, with different focal lengths in the two symmetry planes. This system can obtain a wider field of view when using sensors with conventional size. We propose a method for designing catadioptric anamorphic optical systems based on their first-order aberration characteristics. A catadioptric anamorphic optical system is designed by using a biconic surface, with a focal length of 500 mm in the
XOZ plane and 1000 mm in theYOZ plane. The system’s F-number is 10, and the full field angle is 1°×1°. The mean value of the full field of view MTF of the system is higher than 0.3 at 80 lp/mm. The overall structure of the system is compact, and the imaging quality is excellent. -
表 1变形光学系统一阶像差
Table 1.Primary aberration of anamorphic optical system
Term Polynomial Aberration name 1 ${D_1}\rho _x^4$ X-Spherical aberration 2 ${D_2}\rho _y^4$ Y-Spherical aberration 3 ${D_3}\rho _x^2\rho _y^2$ SKEW-Spherical aberration 4 ${D_4}{H_x}\rho _x^3$ X-Coma 5 ${D_5}{H_y}\rho _x^2{\rho _y}$ SKEW-Coma 6 ${D_6}{H_x}{\rho _x}\rho _y^2$ SKEW-Coma 7 ${D_7}{H_y}\rho _y^3$ Y-Coma 8 ${D_8}H_x^2\rho _x^2$ X-Astigmatism & FC 9 ${D_9}H_y^2\rho _y^2$ Y-Astigmatism & FC 10 ${D_{10}}H_y^2\rho _x^2$ SKEW-Astigmatism & FC 11 ${D_{11}}H_x^2\rho _y^2$ SKEW-Astigmatism & FC 12 ${D_{12}}{H_x}{H_y}{\rho _x}{\rho _y}$ SKEW-Astigmatism & FC 13 ${D_{13}}H_x^3{\rho _x}$ X-Distortion 14 ${D_{14}}H_y^3{\rho _y}$ Y-Distortion 15 ${D_{15}}{H_x}H_y^2{\rho _x}$ SKEW-Distortion 16 ${D_{16}}H_x^2{H_y}{\rho _y}$ SKEW-Distortion 表 2分系统参数
Table 2.Subsystem parameters
参数 分系统一 分系统二 系统孔径$/{\text{mm}}$ 50 100 视场角$2\omega /(^\circ )$ 1 1 系统焦距$/{\text{mm}}$ 500 1000 系统 ${\text{F-number}}$ 10 10 表 3集成系统参数
Table 3.Parameters of integrated system
参数 X-Zsymmetric plane Y-Zsymmetric plane 系统孔径$/{\text{mm}}$ 50 100 视场角$2\omega /(^\circ )$ 1 1 焦距$/{\text{mm}}$ 500 1000 ${\text{F - number}}$ 10 10 表 4光学系统结构参数表
Table 4.Configuration parameters of the optical system
Surface Type Thickness Material Cx Cy kx ky 1 Biconic surface −104.117 mirror −0.03431 −0.03704 −1.159 −1.139 2 Biconic surface 112.651 mirror −0.08445 −0.012 −5.249 −3.948 3 Biconic surface 5.213 ZF50 0.041 0.032 −2.747 −4.336 4 Biconic surface 4.123 − 0.048 0.011 −1.941 −86.885 5 Biconic surface 6.000 H-BAK3 0.016 −0.103 25.940 −1.823 6 Biconic surface 12.952 − 0.032 0.044 2.986 −11.632 -
[1] HENRI C. Anamorphotic lens system and method of making the same: US, 1962892A[P]. 1934-06-12. [2] MIGURA S, KNEER B, NEUMANN J T,et al. Anamorphic high-NA EUV lithography optics[J].Proceedings of SPIE, 2015, 9661: 96610T.doi:10.1117/12.2196393 [3] 钟志坚, 李琛毅, 李世光, 等. 先进光刻中的聚焦控制预算(I)-光路部分[J]. 中国光学,2021,14(5):1104-1119.doi:10.37188/CO.2021-0033ZHONG ZH J, LI CH Y, LI SH G,et al. Budget analysis of focus control in advanced lithography (I) -optical path[J].Chinese Optics, 2021, 14(5): 1104-1119. (in Chinese)doi:10.37188/CO.2021-0033 [4] TAN Q W, GUO Y D, LI Y,et al. Primary aberration optimization for double-plane symmetric beam shaping systems using a pair of curved reference surfaces[J].Optics Express, 2022, 30(5): 7664-7676.doi:10.1364/OE.449222 [5] KASHIMA S, HAZUMI M, IMADA H,et al. Wide field-of-view crossed Dragone optical system using anamorphic aspherical surfaces[J].Applied Optics, 2018, 57(15): 4171-4179.doi:10.1364/AO.57.004171 [6] DEHOOG E A. Anamorphic zoom lens based on rotating cylindrical lenses[J].Optics Express, 2021, 29(8): 12206-12214.doi:10.1364/OE.422097 [7] XU CH, SONG W T, WANG Y T. Design of a miniature anamorphic lens with a freeform front group and an aspheric rear group[J].Optical Engineering, 2021, 60(6): 065104. [8] WYNNE C G. The primary aberrations of anamorphotic lens systems[J].Proceedings of the Physical Society. Section B, 1954, 67(7): 529-537.doi:10.1088/0370-1301/67/7/303 [9] ROGERS J R.Aberrations of unobscured reflective optical systems[D]. Tucson: University of Arizona, 1983. [10] ZHANG J K, CHEN X B, LI F J,et al. Paraxial lens design of anamorphic lenses with a fixed anamorphic ratio[J].OSA Continuum, 2019, 2(4): 1430-1454.doi:10.1364/OSAC.2.001430 [11] YUAN SH, SASIAN J. Aberrations of anamorphic optical systems. I: the first-order foundation and method for deriving the anamorphic primary aberration coefficients[J].Applied Optics, 2009, 48(13): 2574-2584.doi:10.1364/AO.48.002574 [12] YUAN SH, SASIAN J. Aberrations of anamorphic optical systems. II. Primary aberration theory for cylindrical anamorphic systems[J].Applied Optics, 2009, 48(15): 2836-2841.doi:10.1364/AO.48.002836 [13] 潘君骅. 光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社, 2004.PAN J H.The Design, Manufacture and Test of the Aspherical Optical Surfaces[M]. Suzhou: Soochow University Press, 2004. (in Chinese) [14] 朱浩, 崔庆丰, 朴明旭. 无遮拦三反射镜变形光学系统设计[J]. 光学学报,2014,34(12):1222005.doi:10.3788/AOS201434.1222005ZHU H, CUI Q F, PIAO M X. Design of unobscured three-mirror anamorphic optical systems[J].Acta Optica Sinica, 2014, 34(12): 1222005. (in Chinese)doi:10.3788/AOS201434.1222005 [15] YUAN SH.Aberrations of anamorphic optical systems[D]. Tucson: University of Arizona, 2008. [16] 白晓泉, 郭良, 马宏财, 等. 离轴三反望远镜轴向与横向失调量像差耦合特性[J]. 中国光学(中英文),2022,15(4):747-760.doi:10.37188/CO.2021-0164BAI X Q, GUO L, MA H C,et al. Aberration coupling characteristics of axial and lateral misalignments of off-axis three-mirror telescopes[J].Chinese Optics, 2022, 15(4): 747-760. (in Chinese)doi:10.37188/CO.2021-0164 [17] 孟庆宇, 秦子长, 任成明, 等. 光学系统降敏设计方法综述[J]. 中国光学(中英文),2022,15(5):863-877.doi:10.37188/CO.2022-0096MENG Q Y, QIN Z CH, REN CH M,et al. Review of optical systems′ desensitization design methods[J].Chinese Optics, 2022, 15(5): 863-877. (in Chinese)doi:10.37188/CO.2022-0096