Design of UV small f-number high variable power hyperspectral resolution imaging spectrometer
-
摘要:
常规成像光谱仪一般变倍比较低,不利于大视场长狭缝多通道光学系统的扩展应用;空间遥感中紫外波段的辐射能量较低,需要成像光谱仪具有更小的F数。针对高光谱分辨率成像光谱仪小F数的探测需求,本文设计了一种具有高变倍的高光谱分辨率Offner紫外成像光谱仪。该成像光谱仪的后置分光系统采用了具有轻小型特点的改进型Offner结构。结合成像光谱仪对变倍比和小F数需求的基础上,通过理论推导得到Offner初始结构参数。在像面前插入一块弯月透镜,增加系统的优化自由度,进而提升系统的成像质量。最终得到的成像光谱仪工作在270~300 nm波段时,具有40 mm的长狭缝,光谱分辨率优于0.6 nm,光谱采样0.15 nm,系统变倍比小于0.22,F数小于2,在截止频率为 14 lp/mm 时,系统调制传递函数(MTF)均优于0.9,系统各波段各视场均方根半径(RMS)均小于12 μm。本文的研究对紫外波段高光谱探测成像光谱仪实现小F数、高变倍设计提供了一种设计方案。
Abstract:Conventional imaging spectrometers generally have low variable power, which is not conducive to the extended application of large-field, long-slit, multi-channel optical systems. In space remote sensing, the radiation energy of the ultraviolet band is low, which requires the imaging spectrometer to have a smaller F-number. In order to meet the requirement of detecting small F-number of high variable power and high spectral resolution imaging spectrometer, a high spectral resolution Offner UV imaging spectrometer with high variable power is designed in this paper. An improved Offner structure with light and small size is adopted in the rear beam splitting system of the imaging spectrometer. Based on the requirements of variable power ratio and small F-number of the imaging spectrometer, the initial Offner structure parameters are derived theoretically. A meniscus lens is inserted in front of the image to increase the degree of freedom of optimization of the system and improve the imaging quality of the system. The resulting imaging spectrometer works in the 270~300 nm band with a long slit of 40 mm, a spectral resolution better than 0.6 nm, a spectral sampling of 0.15nm, the system variable power ratio less than 0.22, and an F number less than 2. the system modulation transfer function (MTF) is better than 0.9 at a cutoff frequency of 14 lp/mm, and the root mean square radius (RMS) of each field of view in each band is less than 12 μm. This study provides a design scheme for the UV-band hyperspectral detection imaging spectrometer with small F-number and high variable power.
-
Key words:
- optical design/
- imaging spectrometer/
- Offner system
-
表 1小F数高变倍成像光谱仪指标要求
Table 1.Small F-number high variable power imaging spectrometer index requirement
参数 指标 波段/nm 270−300 视场/(°) 20 F数 2 变倍比 <0.22 光谱分辨率/nm <0.6 狭缝长度/mm 40 MTF >0.8@14 lp/mm 探测器像元尺寸/μm 20×30 表 2小F数高变倍成像光谱仪系统数据
Table 2.Small F-number high variable imaging spectrometer system data
表面 Y半径(mm) Y偏心
(mm)Alpha倾斜
(°)1 -990.00 -5.89 12.18 2 -233.73 / -4.65 3 infinite -130.12 -3.86 4 -386.80 127.07 7.97 5 510.22 -88.36 -28.17 6 204.34 / / 7 infinite -28 19.34 -
[1] 马子吉, 温作赢, 赵锋, 等. 真空紫外光电离质谱用于在线检测区分不同品牌卷烟[J]. 分析化学,2022,50(12):1927-1934.MA Z J, WEN Z Y, ZHAO F,et al. Online analysis of different brands of cigarettes by vacuum ultraviolet photoionization mass spectrometry[J].Chinese Journal of Analytical Chemistry, 2022, 50(12): 1927-1934. (in Chinese) [2] 陈玥瑶, 夏静静, 韦芸, 等. 近红外光谱法无损检测平谷产大桃品质方法研究[J]. 分析化学,2023,51(3):454-462.CHEN Y Y, XIA J J, WEI Y,et al. Research on nondestructive quality test of Pinggu Peach by near-infrared spectroscopy[J].Chinese Journal of Analytical Chemistry, 2023, 51(3): 454-462. (in Chinese) [3] 陈塑淏, 吕博, 刘伟奇, 等. 用于电晕检测的日盲紫外成像系统设计[J]. 光子学报,2022,51(9):0922001.doi:10.3788/gzxb20225109.0922001CHEN S H, LÜ B, LIU W Q,et al. Design of a solar-blind ultraviolet imaging system for corona detection[J].Acta Photonica Sinica, 2022, 51(9): 0922001. (in Chinese)doi:10.3788/gzxb20225109.0922001 [4] THUILLIER G, ZHU P, SNOW M,et al. Characteristics of solar-irradiance spectra from measurements, modeling, and theoretical approach[J].Light:Science&Applications, 2022, 11(1): 79. [5] DE VRIES J, VOORS R, ORDING B,et al. TROPOMI on ESA’s Sentinel 5p ready for launch and use[J].Proceedings of SPIE, 2016, 9688: 96880B. [6] BODAH B W, NECKEL A, MACULAN L S,et al. Sentinel-5P TROPOMI satellite application for NO2and CO studies aiming at environmental valuation[J].Journal of Cleaner Production, 2022, 357: 131960.doi:10.1016/j.jclepro.2022.131960 [7] HACHMEISTER J, SCHNEISING O, BUCHWITZ M,et al. On the influence of underlying elevation data on Sentinel-5 precursor TROPOMI satellite methane retrievals over Greenland[J].Atmospheric Measurement Techniques, 2022, 15(13): 4063-4074.doi:10.5194/amt-15-4063-2022 [8] 司福祺, 江宇, 江庆五, 等. 星载大气痕量气体差分吸收光谱仪前置光学系统设计[J]. 光学学报,2013,33(3):0322002.doi:10.3788/AOS201333.0322002SI F Q, JIANG Y, JIANG Q W,et al. Design of fore optical system in space- borne differential optical absorption spectrometer for atmospheric trace gas monitoring[J].Acta Optica Sinica, 2013, 33(3): 0322002. (in Chinese)doi:10.3788/AOS201333.0322002 [9] 程良晓, 陶金花, 余超, 等. 高分五号大气痕量气体差分吸收光谱仪对流层NO2柱浓度遥感反演研究[J]. 遥感学报,2021,25(11):2313-2325.doi:10.11834/jrs.20210303CHENG L X, TAO J H, YU C,et al. Tropospheric NO2column density retrieval from the GF-5 EMI data[J].National Remote Sensing Bulletin, 2021, 25(11): 2313-2325. (in Chinese)doi:10.11834/jrs.20210303 [10] 薛庆生. 星载宽视场差分吸收成像光谱仪光学设计[J]. 光学学报,2015,35(1):0122002.doi:10.3788/AOS201535.0122002XUE Q SH. Optical design of space-based wide field-of-view differential optical absorption imaging spectrometer[J].Acta Optica Sinica, 2015, 35(1): 0122002. (in Chinese)doi:10.3788/AOS201535.0122002 [11] YE X, YI X L, LIN CH,et al. Instrument development: Chinese radiometric benchmark of reflected solar band based on space cryogenic absolute radiometer[J].Remote Sensing, 2020, 12(17): 2856.doi:10.3390/rs12172856 [12] 刘明言, 石秀顶, 李天国, 等. 电化学分析方法检测重金属离子研究进展[J]. 应用化学,2023,40(4):463-475.LIU M Y, SHI X D, LI T G,et al. Research progress in detection of heavy metal ions by electrochemical analysis[J].Chinese Journal of Applied Chemistry, 2023, 40(4): 463-475. (in Chinese) [13] 陈颖, 胡天丁, 刘云利, 等. 二氧化硫在化学资源化利用中的研究进展[J]. 应用化学,2022,39(2):223-234.CHEN Y, HU T D, LIU Y L,et al. Research progress on chemical resourse utilization of sulfur dioxide[J].Chinese Journal of Applied Chemistry, 2022, 39(2): 223-234. (in Chinese) [14] 杨礼艳. 分光谱辐射表光学系统设计和定标方法研究[D]. 长春: 长春理工大学, 2015.YANG L Y. Optical system design and calibration method research of spectroradiometer[D]. Changchun: Changchun University of Science and Technology, 2015. (in Chinese) [15] 范纪泽, 李博, 张璐, 等. 应用于作物荧光检测的改进型Offner光谱仪设计[J]. 中国光学,2021,14(6):1459-1467.doi:10.37188/CO.2021-0073FAN J Z, LI B, ZHANG L,et al. Design of an improved Offner spectrometer for crop fluorescence detection[J].Chinese Optics, 2021, 14(6): 1459-1467. (in Chinese)doi:10.37188/CO.2021-0073