-
摘要:
为了实现凹非球面的快速、高精度与通用化检测,文中提出了一种将非球面当做球面直接采用干涉仪检测的非零位干涉检测方法,并结合相应的数据处理方法,获得非球面的面形误差检测结果。首先介绍了该方法的检测原理,建立了回程误差、调整误差的计算与去除模型,研究了面形误差的数据处理方法。然后以两个不同非球面度的凹非球面为例,对其回程误差和调整误差进行了仿真计算,验证了该方法的有效性。最后搭建了凹非球面的非零位检测实验装置,成功测量得到其面形误差。通过与自准直零位检测法及LUPHOScan轮廓测量法检测结果的对比,发现两种方法测量得到的误差结果的面形分布和评价指标具有高度一致性,验证了该检测方法的正确性。该检测方法在保证高精度测量的同时兼备一定的通用性与便捷性,为凹非球面的通用化检测提供了一种有效手段。
Abstract:In order to realize the rapid, high-precision, and universal testing of concave aspheres, a non-null interferometry is proposed in this paper, which takes the asphere as a sphere and measures it directly with an interferometer. Combined with the corresponding data processing methods, the test results of the aspheric are obtained. Firstly, the detection theory of this method is introduced, the calculation and removal models of retrace error and adjustment error are established, and the data processing method of shape error is studied. Secondly, taking two concave aspherical surfaces with different parameters as an example, the retrace error and adjustment error are simulated, which verified the effectiveness of the method. Finally, a non-null interferometric experimental setup of concave aspheric surface is performed, and its shape error is successfully obtained. By comparing the results with autocollimation method and LUPHOScan method, it is found that the surface distribution and evaluation indicators of the results are highly consistent, which verifies the correctness of this method. This method provides an effective measurement method for concave aspheric surface with high precision, universality, and convenience.
-
图 4非零位检测凹非球面:(a)非零位检测凹非球面光路图;(b)非零位直接检测凹抛物面的数据; (c)非零位直接检测凹椭球面的数据;
Figure 4.Non-null testing concave aspheric: (a) The light path diagram of non-null testing concave aspheric; (b) Data of concave paraboloid by non-null direct non-null interferometry (c) Data of concave ellipsoid by non-null direct non-null interferometry
表 1Zernike多项式的项数与像差的对应关系
Table 1.Correspondence between the number of terms of Zernike polynomials and aberrations
Term Polynomial Meaning $ {Z_4} $ $ - 1{\text{ + }}2\left( {{x^2} + {y^2}} \right) $ Power $ {Z_7} $ $ \left( { - 2 + 3{x^2} + 3{y^2}} \right)x $ Coma X $ {Z_8} $ $ \left( { - 2 + 3{x^2} + 3{y^2}} \right)y $ Coma Y $ {Z_9} $ $ 1 - 6\left( {{x^2} + {y^2}} \right) + 6{\left( {{x^2} + {y^2}} \right)^2} $ Primary Spherical 表 2凹抛物面参数
Table 2.Parameters of concave paraboloid
Parameter Value Parameter Value Aspheric type Concave paraboloid Maximum sag 1.67 mm Diameter 90 mm Maximum slope 4.25° Radius curvature of the vertex 606 mm Maximum asphericity 0.575 μm Conic coefficient K −1 Best radius of the reference sphere 606.835 mm 表 3凹椭球面参数
Table 3.Parameters of concave ellipsoid
Parameter Value Parameter Value Aspheric type Concave ellipsoid Maximum sag 2.91 mm Diameter 90 mm Maximum slope 7.39° Radius curvature of the vertex 348 mm Maximum asphericity 2.0154 μm Conic coefficient K −0.66 Best radius of the reference sphere 348.9615 mm 表 4凹抛物面回程误差的仿真计算
Table 4.Simulation calculation of retrace error of concave paraboloid
OA/mm $ O P D $ Power item $ Z_{OPD(4)} $ Primary Spherical $Z_{\Delta{OPD(9)}}$ Retrace error 605 606 606.835 607 608 表 5凹椭球面回程误差的仿真计算
Table 5.Simulation calculation of retrace error of concave ellipsoid
OA/mm $ O P D $ Power item $ Z_{OPD(4)} $ Primary Spherical $ Z_{\Delta{OPD(9)}}$ Retrace error 347 348 348.9615 349 350 表 6实验中距离误差引入的离焦误差与去除
Table 6.Defocusing error introduced by distance errors in experiments and its removal unit: nm
Detection result Power is adjusted to a minimum Adjust the distanceL1 Adjust the distanceL2 Adjust the distanceL3 Fringe pattern Surface error before removing Power
PV=639.7608
RMS=135.4192
PV=4283.4232
RMS=1200.4216
PV=1833.8544
RMS=515.732
PV=1999.0152
RMS=523.3256Surface error after removing Power
PV= 627.1048
RMS=135.4192
PV= 654.3152
RMS=133.5208
PV=721.392
RMS=132.888
PV=656.2136
RMS=137.3176表 7实验中倾斜/偏心误差引入的彗差与去除
Table 7.Comet error introduced by tilt/eccentricity error in experiments and removal of the error unit:nm
Detection result Coma is adjusted to a minimum Adjust the eccentricθ1 Adjust the eccentricθ2 Adjust the eccentricθ3 Fringe pattern Surface error before removing Coma
PV=722.6576
RMS=137.3176
PV=656.8464
RMS=133.5208
PV=641.6592
RMS=134.7864
PV=649.2528
RMS=136.6848Surface error after removing Coma
PV= 510.6696
RMS=125.2944
PV= 489.7872
RMS=123.3960
PV= 491.0528
RMS=125.2944
PV= 488.5216
RMS=126.5600 -
[1] 刘锋伟, 吴永前, 陈强, 等. 大口径光学非球面镜先进制造技术概述[J]. 光电工程,2020,47(10):200203.LIU F W, WU Y Q, CHEN Q,et al. Overview of advanced manufacturing technology of large-aperture aspheric mirror[J].Opto-Electronic Engineering, 2020, 47(10): 200203. (in Chinese) [2] 师途, 杨甬英, 张磊, 等. 非球面光学元件的面形检测技术[J]. 中国光学,2014,7(1):26-46.SHI T, YANG Y Y, ZHANG L,et al. Surface testing methods of aspheric optical elements[J].Chinese Optics, 2014, 7(1): 26-46. (in Chinese) [3] GUO H, LI X F, ZHANG X X,et al. Comparing the effects of highly aspherical lenslets versus defocus incorporated multiple segment spectacle lenses on myopia control[J].Scientific Reports, 2023, 13(1): 3048.doi:10.1038/s41598-023-30157-2 [4] 常军, 张正慧, 王蕊瑞. 特殊光学元件的新型子孔径拼接检测方法研究[J]. 物理学报,2011,60(3):034218.doi:10.7498/aps.60.034218CHANG J, ZHANG ZH H, WANG X R. A new sub-aperture stitching method of measuring special optical element[J].Acta Physica Sinica, 2011, 60(3): 034218. (in Chinese)doi:10.7498/aps.60.034218 [5] 范芯蕊, 刁晓飞, 吴剑威, 等. 高精度轴对称非球面反射镜轮廓测量方法(特邀)[J]. 红外与 工程,2022,51(9):20220500.doi:10.3788/IRLA20220500FAN X R, DIAO X F, WU J W,et al. High-precision profile measurement method for axisymmetric aspheric mirror (invited)[J].Infrared and Laser Engineering, 2022, 51(9): 20220500. (in Chinese)doi:10.3788/IRLA20220500 [6] 冯帅, 常军, 牛亚军, 等. 一种非对称双面离轴非球面反射镜检测补偿变焦光路设计方法[J]. 物理学报,2019,68(11):114201.doi:10.7498/aps.68.20182253FENG SH, CHANG J, NIU Y J,et al. A method of designing asymmetric double-sided off-axis aspheric mirror detection compensation zoom light path[J].Acta Physica Sinica, 2019, 68(11): 114201. (in Chinese)doi:10.7498/aps.68.20182253 [7] HU P, XIONG X, ZHANG W H,et al. Accurate inner profile measurement of a high aspect ratio aspheric workpiece using a two-probe measuring system[J].Applied Sciences, 2022, 12(13): 6628.doi:10.3390/app12136628 [8] 苏航, 王孝坤, 程强, 等. 子孔径拼接和计算全息混合补偿检测大口径凸非球面(特邀)[J]. 红外与 工程,2022,51(9):20220576.doi:10.3788/IRLA20220576SU H, WANG X K, CHENG Q,et al. Sub-aperture stiching and CGH mixed compensation for the testing of large convex asphere (invited)[J].Infrared and Laser Engineering, 2022, 51(9): 20220576. (in Chinese)doi:10.3788/IRLA20220576 [9] 闫公敬, 张宪忠. 非零位凸非球面子孔径拼接检测技术研究[J]. 中国光学,2018,11(5):798-803.doi:10.3788/co.20181105.0798YAN G J, ZHANG X ZH. Research on non-null convex aspherical sub-aperture stitching detection technology[J].Chinese Optics, 2018, 11(5): 798-803. (in Chinese)doi:10.3788/co.20181105.0798 [10] 王孝坤, 王丽辉, 张学军. 干涉法实时测量浅度非球面技术[J]. 光学 精密工程,2008,16(2):184-189.WANG X K, WANG L H, ZHANG X J. Testing of weak aspheric surface by real-time interferometry[J].Optics and Precision Engineering, 2008, 16(2): 184-189. (in Chinese) [11] 梁子健, 杨甬英, 赵宏洋, 等. 非球面光学元件面型检测技术研究进展与最新应用[J]. 中国光学,2022,15(2):161-186.doi:10.37188/CO.2021-0143LIANG Z J, YANG Y Y, ZHAO H Y,et al. Advances in research and applications of optical aspheric surface metrology[J].Chinese Optics, 2022, 15(2): 161-186. (in Chinese)doi:10.37188/CO.2021-0143 [12] 姚劲刚, 张金平, 郑列华, 等. 干涉零位补偿检验研究[J]. 光学学报,2015,35(6):0622003.doi:10.3788/AOS201535.0622003YAO J G, ZHANG J P, ZHENG L H,et al. Study on interference null compensator testing[J].Acta Optica Sinica, 2015, 35(6): 0622003. (in Chinese)doi:10.3788/AOS201535.0622003 [13] ZHANG L, TIAN CH, LIU D,et al. Non-null annular subaperture stitching interferometry for steep aspheric measurement[J].Applied Optics, 2014, 53(25): 5755-5762.doi:10.1364/AO.53.005755 [14] SHI T, LIU D, ZHOU Y H,et al. Practical retrace error correction in non-null aspheric testing: a comparison[J].Optics Communications, 2017, 383: 378-385.doi:10.1016/j.optcom.2016.09.034 [15] 贾文昕, 韩森, 张凌华, 等. 离轴椭圆柱面镜测量方法及调整误差分析[J]. 光学学报,2021,41(20):2012004.doi:10.3788/AOS202141.2012004JIA W X, HAN S, ZHANG L H,et al. Measurement method and alignment error analysis of off-axis elliptical cylindrical mirror[J].Acta Optica Sinica, 2021, 41(20): 2012004. (in Chinese)doi:10.3788/AOS202141.2012004 [16] 沙定国, 全书学, 朱秋东, 等. 光学非球面度的定义及其准确计算[J]. 光子学报,1995,24(1):91-94.SHA D G, QUAN SH X, ZHU Q D,et al. Definition and accurate calculation of optical asphericity[J].Acta Photonica Sinica, 1995, 24(1): 91-94. (in Chinese)(查阅网上资料, 未找到对应的英文翻译, 请确认). [17] 方素平, 小森雅晴, 久保爱三, 等. 适用于精密复杂零件表面形状的干涉测量光学系统的光线追迹方法[J]. 机械工程学报,2009,45(2):170-177.doi:10.3901/JME.2009.02.170FANG S P, KOMORI M, KUBO A,et al. Ray tracing method for optical system of interferometry measurement used for form deviation of precise complex surface of machine parts[J].Journal of Mechanical Engineering, 2009, 45(2): 170-177. (in Chinese)doi:10.3901/JME.2009.02.170 [18] 周龙峰, 张昂, 张俊波, 等. 基于成像清晰度函数的非球面反射镜位置校正实验研究[J]. 物理学报,2016,65(13):139501.doi:10.7498/aps.65.139501ZHOU L F, ZHANG A, ZHANG J B,et al. Experimental research of alignment error correction by aspheric mirror based on the function of imaging quality[J].Acta Physica Sinica, 2016, 65(13): 139501. (in Chinese)doi:10.7498/aps.65.139501 [19] 程德文, 陈海龙, 王涌天, 等. 复杂光学曲面数理描述和设计方法研究[J]. 光学学报,2023,43(8):0822008.doi:10.3788/AOS221980CHENG D W, CHEN H L, WANG Y T,et al. Mathematical description and design methods of complex optical surfaces[J].Acta Optica Sinica, 2023, 43(8): 0822008. (in Chinese)doi:10.3788/AOS221980 [20] GU W, SONG W H, WU G F,et al. Model-based multi-fringe interferometry using Zernike polynomials[J].Optics and Lasers in Engineering, 2018, 105: 198-200.doi:10.1016/j.optlaseng.2018.01.020 [21] 郭良贤, 卫俊杰, 唐培. Zernike圆域多项式镜面拟合仿真与精度研究[J]. 光学与光电技术,2018,16(6):56-62.GUO L X, WEI J J, TANG P. Fitting simulation and precision of mirror surface with Zernike circular polynomial[J].Optics & Optoelectronic Technology, 2018, 16(6): 56-62. (in Chinese)