Laser backscattering characteristics of ship wake bubble target
-
摘要:
为了提高 光尾流制导距离和探测信噪比,研究不同距离、不同气泡尺度、不同气泡数密度和不同气泡层厚度的气泡目标的后向散射特性具有重要的理论和应用价值。采用蒙特卡洛仿真和室内实验研究了前述舰船尾流气泡目标的 后向散射特性。结果表明:近距离的气泡要比远距离的气泡更容易被检测到;在气泡数密度为102~108m−3,气泡层厚度大于0.05 m时,大尺度和小尺度气泡始终存在回波信号,气泡层厚度小于0.05 m时无回波信号,此时,气泡层厚度特性对气泡后向散射的影响最大;在气泡数密度为109m−3,气泡层厚度为0.05 m以下时,大尺度气泡回波信号脉冲宽度会展宽。在这种情况下,气泡数密度和尺度特性对气泡后向散射的影响最大。搭建了水下典型气泡尺度下的 后向散射测量系统,验证了不同舰船尾流气泡目标特性对 后向探测系统的影响。本文研究成果可为舰船尾流 探测工程提供支撑。
Abstract:In order to improve the laser wake guidance distance and the detection signal-to-noise ratio, it is of great theoretical and practical value to study the backscattering characteristics of bubble targets with different distances, bubble sizes, bubble number densities, and bubble layer thicknesses. The laser backscattering characteristics of ship wake bubble targets with different distances, scales, numerical densities, and thicknesses are studied using Monte Carlo simulations and indoor experiments. When the bubble density is 102−108m−3and the thickness of the bubble layer is greater than 0.05 m, there is always an echo signal for both large- and small-scale bubbles. When the thickness of the bubble layer is less than 0.05 m, no echo signal is detected. At this situation, the thickness of the bubble layer is the greatest impact factor on the backward scattering of bubbles. When the bubble number density is 109m−3and the thickness of the bubble layer is below 0.05 m, the pulse width of the large-scale bubble echo signal widens. The number density and scale characteristics of the bubbles have the greatest impact on the backscattering of bubbles. A laser backscattering measurement system at the scale of typical underwater bubbles is built to verify the influence of different ship wake bubble characteristics on the laser backscattering detection system, which can provide support for the ship wake laser detection project.
-
Key words:
- ship wake/
- Monte Carlo/
- backscattering/
- target characteristics
-
-
[1] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性[J]. 物理学报,2022,71(1):014301.doi:10.7498/aps.71.20211266ZHENG Y X, NA R M D L. Acoustic cavitation characteristics of bubble in compressible liquid[J].Acta Physica Sinica, 2022, 71(1): 014301. (in Chinese)doi:10.7498/aps.71.20211266 [2] 胡宁宁, 党卓然, 张牧昊, 等. 基于卷积神经网络的大尺寸气泡体积二维图像测定方法[J]. 核动力工程,2021,42(6):38-43.doi:10.13832/j.jnpe.2021.06.0038HU N N, DANG ZH R, ZHANG M H,et al. Measurements of large bubble volume based on 2-D images processing applying convolutional neural network[J].Nuclear Power Engineering, 2021, 42(6): 38-43. (in Chinese)doi:10.13832/j.jnpe.2021.06.0038 [3] 刘文鹏. 典型水文条件对气泡运动的影响规律研究[J]. 海洋技术学报,2021,40(3):58-66.LIU W P. Study on the influence of typical hydrological conditions to bubble motion[J].Journal of Ocean Technology, 2021, 40(3): 58-66. (in Chinese) [4] 王明军, 王宇航, 陈丹, 等. 二维动态海面-气泡层中蓝绿 的透射特性[J]. 光学学报,2022,42(2):0214001.doi:10.3788/AOS202242.0214001WANG M J, WANG Y H, CHEN D,et al. Transmission characteristics of blue-green laser through two-dimensional dynamic sea surface-bubble layer[J].Acta Optica Sinica, 2022, 42(2): 0214001. (in Chinese)doi:10.3788/AOS202242.0214001 [5] 梁秀满, 刘文涛, 牛福生, 等. 基于机器视觉的浮选气泡体积和表面积测量研究[J]. 光学学报,2018,38(12):1215009.doi:10.3788/AOS201838.1215009LIANG X M, LIU W T, NIU F SH,et al. Research on measurement of volume and surface area of flotation bubbles based on machine vision[J].Acta Optica Sinica, 2018, 38(12): 1215009. (in Chinese)doi:10.3788/AOS201838.1215009 [6] 胡瑞, 唐继国, 李晓, 等. 生长和浮升过程中气泡形状振荡特性研究[J]. 原子能科学技术,2022,56(3):450-456.HU R, TANG J G, LI X,et al. Bubble shape oscillation characteristic during its growth and rising process[J].Atomic Energy Science and Technology, 2022, 56(3): 450-456. (in Chinese) [7] LI SH M, ZHANG A M, LIU N N. Effect of a rigid structure on the dynamics of a bubble beneath the free surface[J].Theoretical and Applied Mechanics Letters, 2021, 11(6): 100311.doi:10.1016/j.taml.2021.100311 [8] 张丽娟, 张传超, 陈静, 等. 诱导熔石英表面损伤修复中的气泡形成和控制研究[J]. 物理学报,2018,67(1):016103.doi:10.7498/aps.67.20171839ZHANG L J, ZHANG CH CH, CHEN J,et al. Formation and control of bubbles during the mitigation of laser-induced damage on fused silica surface[J].Acta Physica Sinica, 2018, 67(1): 016103. (in Chinese)doi:10.7498/aps.67.20171839 [9] HU Q L, HUO J T, MIAO X K,et al. Simulation of false-alarm area of laser guidance based on Mie scattering model[J].Optoelectronics Letters, 2021, 17(4): 236-240.doi:10.1007/s11801-021-0041-6 [10] 叶得前. 航迹尾流的散射光偏振探测及特性研究[D]. 长春: 长春理工大学, 2020.YE D Q.Polarization detection and characteristics of scattered light in track wake[D]. Changchun: Changchun University of Science and Technology, 2020. (in Chinese) [11] WANG Y Q, ZHANG J H, ZHENG Y CH,et al. Brillouin scattering spectrum for liquid detection and applications in oceanography[J].Opto-Electronic Advances, 2023, 6(1): 220016.doi:10.29026/oea.2023.220016 [12] 吕金光, 梁静秋, 王维彪, 等. 快照傅里叶变换成像光谱仪阵列非均匀特性的Monte Carlo分析[J]. 光学学报,2021,41(24):2430001.LV J G, LIANG J Q, WANG W B,et al. Monte Carlo analysis of array non-uniformity in snapshot fourier transform imaging spectrometer[J].Acta Optica Sinica, 2021, 41(24): 2430001. (in Chinese) [13] 郭旭, 胡春晖, 颜昌翔, 等. 基于蒙特卡罗法的星载太阳辐照度光谱仪对日指向误差分析[J]. 光学 精密工程,2021,29(3):474-483.doi:10.37188/OPE.20212903.0474GUO X, HU CH H, YAN CH X,et al. Analysis of sun pointing error of spaceborne solar spectroradiometer based on Monte Carlo method[J].Optical and Precision Engineering, 2021, 29(3): 474-483. (in Chinese)doi:10.37188/OPE.20212903.0474 [14] LIN W H, WANG B B, WANG L,et al. A detail preserving neural network model for Monte Carlo denoising[J].Computational Visual Media, 2020, 6(2): 157-168.doi:10.1007/s41095-020-0167-7 [15] 孔晓娟, 刘秉义, 杨倩, 等. 船载 雷达测量水体光学参数的仿真模拟研究[J]. 红外与 工程,2020,49(2):0205010.doi:10.3788/IRLA202049.0205010KONG X J, LIU B Y, YANG Q,et al. Simulation of water optical property measurement with shipborne lidar[J].Infrared and Laser Engineering, 2020, 49(2): 0205010. (in Chinese)doi:10.3788/IRLA202049.0205010