-
摘要:
紫外 器是研究紫外共振拉曼光谱的重要工具,拉曼信号可以通过共振拉曼效应得到增强,提高拉曼测量的探测极限。本文研究了一种输出波长为228 nm的窄脉宽全固态紫外 器。首先,以Nd:YVO4作为增益介质,采用电光调Q腔倒空技术,实现纳秒量级914 nm基频光输出。然后经过偏硼酸锂(LBO)晶体产生二次谐波,最终经偏硼酸钡(BBO)晶体获得四次谐波228 nm紫外 。研究了不同重复频率时基频光和倍频光功率的变化规律,优化了紫外 的输出效率。当总抽运功率为30W时,在10kHz重复频率下,获得最高平均功率为84 mW的228 nm紫外 输出。228 nm 在5 kHz~25 kHz重复频率范围内连续可调,脉冲宽度保持在2.8~2.9 ns。能够满足紫外光谱检测技术领域的应用需求。
Abstract:Ultraviolet lasers play an important role in the study of ultraviolet resonance Raman spectroscopy. The Raman resonant Raman effect enhance Raman signals and reduces the detection limit of Raman measurement. This paper focuses on the study of an all-solid-state deep-ultraviolet laser with an output wavelength of 228 nm. The laser uses Nd:YVO4as a gain medium and electro-optic q-switched cavity dumping technique to achieve a fundamental frequency output of 914 nm in pulse widths of several nanoseconds. Then, the second-harmonic generation is achieved by LiB3O5(LBO), and the fourth-harmonic 228 nm UV laser is obtained by beta-barium-borate (BBO). The variation of fundamental and second harmonic laser power at different repetition rates is investigate. The average power of Nd:YVO4is saturated and decreases with increased repetition rate due to the low gain at 914 nm. The output efficiency of UV laser is optimized by adjusting the focus lens. At the pump power of 30 W, the highest average power of a 228nm UV laser is 84 mW at 10 kHz. The repetition rate of UV laser is continuously adjustable within the range of 5 kHz−25 kHz, and the pulse width is maintained at 2.8 to 2.9 ns which meets the application requirements in the field of UV spectroscopy detection technology.
-
图 12紫外 光斑强度分布图:(a)二维空间强度分布;(b)三维空间强度分布;(c)水平方向强度分布;(d)竖直方向强度分布
Figure 12.Spot intensity distribution diagram of ultra-violet laser: (a) Two-dimensional spatial intensity distribution; (b) Three-dimensional spatial intensity distribution; (c) Horizontal intensity distribution; (d) Vertical intensity distribution
-
[1] 何玉青, 魏帅迎, 郭一新, 等. 远程紫外拉曼光谱检测技术研究进展[J]. 中国光学,2019,12(6):1249-1259.doi:10.3788/co.20191206.1249HE Y Q, WEI SH Y, GUO Y X,et al. Research progress of remote detection with ultraviolet Raman spectroscopy[J].Chinese Optics, 2019, 12(6): 1249-1259. (in Chinese)doi:10.3788/co.20191206.1249 [2] 吉于今, 楚学影, 董旭, 等. 紫外偏振敏感的CsPbBr3纳米薄膜的可见光发射(英文)[J]. 中国光学,2023,16(1):202-213.doi:10.37188/CO.2022-0152JI Y J, CHU X Y, DONG X,et al. Visible light emission of ultraviolet polarization sensitive CsPbBr3nano-films[J].Chinese Optics, 2023, 16(1): 202-213. (in Chinese)doi:10.37188/CO.2022-0152 [3] HOLTUM T, BLOINO J, PAPPAS C,et al. Ultraviolet resonance Raman spectroscopy of anthracene: Experiment and theory[J].Journal of Raman Spectroscopy, 2021, 52(12): 2292-2300.doi:10.1002/jrs.6223 [4] KUMAMOTO Y, TAGUCHI A, KAWATA S. Deep-ultraviolet biomolecular imaging and analysis[J].Advanced Optical Materials, 2019, 7(5): 1801099.doi:10.1002/adom.201801099 [5] OJAGHI A, CARRAZANA G, CARUSO C,et al. Label-free hematology analysis using deep-ultraviolet microscopy[J].Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(26): 14779-14789.doi:10.1073/pnas.2001404117 [6] SOLTANI S, OJAGHI A, ROBLES F E. Deep UV dispersion and absorption spectroscopy of biomolecules[J].Biomedical Optics Express, 2019, 10(2): 487-499.doi:10.1364/BOE.10.000487 [7] SOLTANI S, OJAGHI A, QIAO H,et al. Prostate cancer histopathology using label-free multispectral deep-UV microscopy quantifies phenotypes of tumor aggressiveness and enables multiple diagnostic virtual stains[J].Scientific Reports, 2022, 12(1): 9329.doi:10.1038/s41598-022-13332-9 [8] WYNN C M, PALMACCI S, KUNZ R R,et al. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence[J].Optics Express, 2010, 18(6): 5399-5406.doi:10.1364/OE.18.005399 [9] GAGNÉ M, KASHYAP R. New nanosecond Q-switched Nd: VO4laser fifth harmonic for fast hydrogen-free fiber Bragg gratings fabrication[J].Optics Communications, 2010, 283(24): 5028-5032.doi:10.1016/j.optcom.2010.07.074 [10] 牛娜, 窦微, 浦双双, 等. 蓝光二极管抽运Pr: YLF腔内倍频连续深紫外 器[J]. 中国光学,2021,14(6):1395-1399.doi:10.37188/CO.2021-0077NIU N, DOU W, PU SH SH,et al. Continuous deep ultraviolet laser by intracavity frequency doubling of blue laser diode pumped Pr: YLF[J].Chinese Optics, 2021, 14(6): 1395-1399. (in Chinese)doi:10.37188/CO.2021-0077 [11] DEYRA L, MARTIAL I, DIDIERJEAN J,et al. Deep-UV 236.5 nm laser by fourth-harmonic generation of a single-crystal fiber Nd: YAG oscillator[J].Optics Letters, 2014, 39(8): 2236-2239.doi:10.1364/OL.39.002236 [12] KANEDA Y, YARBOROUGH J M, MERZLYAK Y,et al. Continuous-wave, single-frequency 229 nm laser source for laser cooling of cadmium atoms[J].Optics Letters, 2016, 41(4): 705-708.doi:10.1364/OL.41.000705 [13] BYKOV S V, ROPPEL R D, MAO M,et al. 228-nm quadrupled quasi-three-level Nd: GdVO4laser for ultraviolet resonance Raman spectroscopy of explosives and biological molecules[J].Journal of Raman Spectroscopy, 2020, 51(12): 2478-2488.doi:10.1002/jrs.5999 [14] DAI SH T, JIANG T, WU H CH,et al. Tunable narrow-linewidth 226 nm laser for hypersonic flow velocimetry[J].Optics Letters, 2020, 45(8): 2291-2294.doi:10.1364/OL.390347 [15] 石朝辉, 刘学松, 黄玉涛, 等. 500kHz, 6 ns高重复频率电光腔倒空Nd: YVO4 器[J]. 中国 ,2014,41(10):1002006.doi:10.3788/CJL201441.1002006SHI ZH H, LIU X S, HUANG Y T,et al. 500kHz, 6 ns high repetition-rate electro-optical cavity dumped Nd: YVO4laser[J].Chinese Journal of Lasers, 2014, 41(10): 1002006. (in Chinese)doi:10.3788/CJL201441.1002006 [16] LIU K, CHEN Y, LI F Q,et al. High peak power 4.7 ns electro-optic cavity dumped TEM001342-nm Nd: YVO4laser[J].Applied Optics, 2015, 54(4): 717-720.doi:10.1364/AO.54.000717 [17] YU X, WANG C, MA Y F,et al. Performance improvement of high repetition rate electro-optical cavity-dumped Nd: GdVO4laser[J].Applied Physics B, 2012, 106(2): 309-313.doi:10.1007/s00340-011-4786-7 [18] LIU K, HE L J, BO Y,et al. Pulse width adjustableQ-switched cavity dumped laser by rotating a quarter-wave plate and a Pockels cell[J].Optics Letters, 2017, 42(13): 2467-2470.doi:10.1364/OL.42.002467 [19] CHEN F, SUN J J, YAN R P,et al. Reabsorption cross section of Nd3+-doped quasi-three-level lasers[J].Scientific Reports, 2019, 9(1): 5620.doi:10.1038/s41598-019-42012-4 [20] 王晓洋, 刘丽娟. 深紫外非线性光学晶体及全固态深紫外相干光源研究进展[J]. 中国光学,2020,13(3):427-441.WANG X Y, LIU L J. Research progress of deep-UV nonlinear optical crystals and all-solid-state deep-UV coherent light sources[J].Chinese Optics, 2020, 13(3): 427-441. (in Chinese)