留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双峰谐振长周期光纤光栅的海水盐度传感器

杜超,赵爽,宋桦可,王秋雨,贾斌,张丽,崔丽琴,赵强,邓霄

downloadPDF
杜超, 赵爽, 宋桦可, 王秋雨, 贾斌, 张丽, 崔丽琴, 赵强, 邓霄. 基于双峰谐振长周期光纤光栅的海水盐度传感器[J]. . doi: 10.37188/CO.2023-0101
引用本文: 杜超, 赵爽, 宋桦可, 王秋雨, 贾斌, 张丽, 崔丽琴, 赵强, 邓霄. 基于双峰谐振长周期光纤光栅的海水盐度传感器[J]. .doi:10.37188/CO.2023-0101
DU Chao, ZHAO Shuang, SONG Hua-ke, WANG Qiu-yu, JIA Bin, ZHANG Li, CUI Li-qin, ZHAO Qiang, DENG Xiao. A seawater salinity sensor based on dual peaks resonance long period fiber grating[J]. Chinese Optics. doi: 10.37188/CO.2023-0101
Citation: DU Chao, ZHAO Shuang, SONG Hua-ke, WANG Qiu-yu, JIA Bin, ZHANG Li, CUI Li-qin, ZHAO Qiang, DENG Xiao. A seawater salinity sensor based on dual peaks resonance long period fiber grating[J].Chinese Optics.doi:10.37188/CO.2023-0101

基于双峰谐振长周期光纤光栅的海水盐度传感器

doi:10.37188/CO.2023-0101
基金项目:国家自然科学基金(No. 62203320, No. 62375198, No. 52009088, No. 61933004);中国博士后科学基金面上项目(No. 2019M661063);山西省回国留学人员科研资助项目(No. 2023-039);崂山实验室科技创新项目(No. LSKJ202204703)
详细信息
    作者简介:

    杜超(1988-),男,山西朔州人,博士,讲师,硕士生导师,2019年于东北大学信息科学与工程学院获得博士学位,主要从事特种光纤传感器设计及其特性方面的研究。E-mail:duchao@tyut.edu.cn

    赵爽(1997-),男,山东济南人,硕士研究生,2020年于青岛大学自动化学院获得学士学位,主要从事光纤光栅传感技术方面的研究。E-mail:zhaoshuang0497@163.com

    宋桦可(2002-),男,山西长治人,本科生,2020年考入太原理工大学物理学院,主要从事新型光电检测技术方面的研究。E-mail:2836003594@qq.com

    王秋雨(1999-),男,江苏淮安人,硕士研究生,2021年于南京林业大学机电学院获得学士学位,主要从事特种光纤光栅传感技术等方面的研究。E-mail:wangqiuyu1234@link.tyut.edu.cn

    贾斌(1995-),男,山西太原人,博士研究生,2018年于南京信息工程大学自动化学院获得学士学位,主要从事光纤光栅传感及冰探测技术方面的研究。E-mail:Jiabin0160@link.tyut.edu.cn

    张丽(1985-),女,山西吕梁人,博士,副教授,2015年于太原理工大学物理与光电工程学院获得博士学位,主要从事光纤传感系统设计与性能方面的研究。E-mail:zhang219li@126.com

    崔丽琴(1983-),女,山西长治人,博士,副教授,2015年太原理工大学物理与光电工程学院获得博士学位,主要从事冰雪环境智能检测技术的研究。E-mail:cuiliqin09@163.com

    赵强(1982-),男,山东济南人,博士,副研究员,2013年于长春理工大学高功率半导体 器国家重点实验室获得博士学位,主要从事光纤传感技术、海洋温盐深探测技术、 精密加工等方面的研究。E-mail:zqhero9494@163.com

    邓霄(1980-),男,山西太原人,博士,教授,硕士生导师,2014年于太原理工大学信息工程学院获得博士学位,主要从事光机电传感技术方面的研究。E-mail:dengxiao@tyut.edu.cn

  • 中图分类号:TN253

A seawater salinity sensor based on dual peaks resonance long period fiber grating

Funds:Supported by National Natural Science Foundation of China (No. 62203320, No. 62375198, No. 52009088, No. 61933004); Project funded by China Postdoctoral Science Foundation (No. 2019M661063); Research Project Supported by Shanxi Scholarship Council of China (No. 2023-039); Science and Technology Innovation Project of Laoshan Laboratory (Qingdao) (No. LSKJ202204703)
More Information
    Corresponding author:dengxiao@tyut.edu.cn
  • 摘要:

    为了研制高灵敏海水盐度传感器,本文基于CO2 技术成功制备出一种工作在色散转折点(DTP)附近的长周期光纤光栅(LPFG)。首先,利用CO2 器在80 μm细单模光纤上制备出工作在DTP附近的LPFG,证明了采用CO2 微加工技术制备较短周期LPFG的可能性。其次,通过调控CO2 器的制备周期,使高阶包层模式LP1,9工作在DTP附近,从而显著提高了LPFG的折射率灵敏度。在双峰谐振增敏效应的作用下,当海水盐度从5.001 ‰变化到39.996 ‰时,光栅周期为115.4 μm的双峰谐振LPFG平均灵敏度高达0.279 nm/‰。研究结果表明,本文制备的LPFG海水盐度传感器具有谐振损耗大和灵敏度高的优点,其在海水盐度监测领域具有较好的应用前景。

  • 图 1CO2 器制备的LPFG结构

    Figure 1.LPFG structure fabricated using CO2laser

    图 2基于80 μm单模光纤的LPFG的PMCs

    Figure 2.PMCs of LPFG based on 80 μm single mode fiber

    图 3海水折射率与盐度的关系

    Figure 3.Seawater refractive index as a function of salinity

    图 4当折射率从1.33变化到1.34时:(a)包层模式为LP1,9的LPFG的PMCs;(b)折射率灵敏度与光栅周期之间的关系

    Figure 4.Refractive index changes from 1.33 to 1.34: (a) PMCs of LPFG with LP1,9cladding mode; (b) Seawater refractive index sensitivity as a function of grating period

    图 5传感探头及测量装置

    Figure 5.Sensing probe and measuring device

    图 6周期为112 μm的LPFG折射率响应特性:(a)LPFG透射光谱在不同折射率下的变化;(b)谐振波长与折射率变化的关系

    Figure 6.Refractive index response characteristics of LPFG with a period of 112 μm: (a) Transmission spectra of LPFG under various refractive indices; (b) Resonance wavelength as a function of refractive index

    图 7周期为113 μm的LPFG折射率响应特性:(a)LPFG透射光谱在不同折射率下的变化;(b)谐振波长与折射率变化的关系

    Figure 7.Refractive index response characteristics of LPFG with a period of 113 μm: (a) Transmission spectra of LPFG under various refractive indices; (b) Resonance wavelength as a function of refractive index

    图 8周期为115.4 μm的LPFG折射率响应特性:(a)LPFG透射光谱在不同折射率下的变化;(b)谐振波长与折射率变化的关系

    Figure 8.Refractive index response characteristics of LPFG with a period of 115.4 μm: (a) Transmission spectra of LPFG under various refractive indices; (b) Resonance wavelength as a function of refractive index

    图 9周期为115.6 μm的LPFG折射率响应特性:(a)LPFG透射光谱在不同折射率下的变化;(b)谐振波长与折射率变化的关系

    Figure 9.Refractive index response characteristics of LPFG with a period of 115.6 μm: (a) Transmission spectra of LPFG under various refractive indices; (b) Resonance wavelength as a function of refractive index

    图 10周期为115.4 μm的LPFG性能测试:(a)重复性;(b)稳定性

    Figure 10.Performance tests of LPFG with a period of 115.4 μm: (a) Repeatability; (b) Stability

    图 11周期为115.4 μm的LPFG温度响应特性:(a)LPFG透射光谱在不同温度下的变化;(b)谐振波长与温度变化的关系

    Figure 11.Temperature response characteristics of LPFG with a period of 115.4 μm: (a) Transmission spectra of LPFG under different temperature; (b) Resonance wavelength as a function of temperature

    表 1不同方法制备的海水盐度传感器灵敏度对比

    Table 1.Comparison of sensitivity for seawater salinity sensors fabricated using different methods

    制备过程 包层直径 (μm) 灵敏度 范围 参考文献
    理论工作:
    1. 减小包层直径
    29.24 3750 nm/RIU 1.33~1.35 [17]
    理论工作:
    1. 减小包层直径
    2. 涂覆高折射率薄膜
    34.8 143000 nm/RIU 1.33~1.331
    1. CO2 刻写
    2. 涂覆水凝胶薄膜
    125 0.1255 nm/‰ 22.8~44.7 ‰ [14]
    1. CO2 刻写
    2. 氢氟酸腐蚀包层
    3. 涂覆TiO2薄膜
    72 0.1633 nm/‰ 5.001~39.996 ‰ [15]
    1. 紫外 刻写
    2. 氢氟酸腐蚀包层
    71.75
    32.5
    1343 nm/RIU
    8734 nm/RIU
    1.353~1.398 [28]
    1. 飞秒 刻写
    2. 涂覆TiO2薄膜
    125 3151.8 nm/RIU 1.33~1.37 [29]
    1. CO2 刻写
    2. 调整光栅周期
    80 2025.549 nm/RIU
    0.279 nm/‰
    1.33356~1.33849
    5.001~39.996 ‰
    本项工作
    下载: 导出CSV
  • [1] SOHAIL T, ZIKA J D, IRVING D B,et al. Observed poleward freshwater transport since 1970[J].Nature, 2022, 602(7898): 617-622.doi:10.1038/s41586-021-04370-w
    [2] KATSUMATA K, PURKEY S G, COWLEY R,et al. GO-SHIP easy ocean: gridded ship-based hydrographic section of temperature, salinity, and dissolved oxygen[J].Scientific Data, 2022, 9(1): 103.doi:10.1038/s41597-022-01212-w
    [3] LI Y, WU G F, SONG G,et al. Soft, pressure-tolerant, flexible electronic sensors for sensing under harsh environments[J].ACS Sensors, 2022, 7(8): 2400-2409.doi:10.1021/acssensors.2c01059
    [4] DINNAT E P, LE VINE D M, BOUTIN J,et al. Remote sensing of sea surface salinity: comparison of satellite and in situ observations and impact of retrieval parameters[J].Remote Sensing, 2019, 11(7): 750.doi:10.3390/rs11070750
    [5] DEMIR O, JOHNSON J T, JEZEK K C,et al. Studies of sea-ice thickness and salinity retrieval using 0.5-2 GHz microwave radiometry[J].IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4304412.
    [6] QIAN Y, ZHAO Y, WU Q L,et al. Review of salinity measurement technology based on optical fiber sensor[J].Sensors and Actuators B:Chemical, 2018, 260: 86-105.doi:10.1016/j.snb.2017.12.077
    [7] QUAN X H, FRY E S. Empirical equation for the index of refraction of seawater[J].Applied Optics, 1995, 34(18): 3477-3480.doi:10.1364/AO.34.003477
    [8] ZHENG H K, ZHAO Y, LV R Q,et al. Study on the temperature and salinity sensing characteristics of multifunctional reflective optical fiber probe[J].IEEE Transactions on Instrumentation and Measurement, 2021, 70: 9514308.
    [9] ZHAO Y, ZHAO J, WANG X X,et al. Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements[J].Sensors and Actuators B:Chemical, 2022, 353: 131134.doi:10.1016/j.snb.2021.131134
    [10] ZHANG S Q, PENG Y, WEI X,et al. High-sensitivity biconical optical fiber SPR salinity sensor with a compact size by fiber grinding technique[J].Measurement, 2022, 204: 112156.doi:10.1016/j.measurement.2022.112156
    [11] WANG Y, TONG R J, ZHAO K J,et al. Optical fiber sensor based on SPR and MZI for seawater salinity and temperature measurement[J].Optics & Laser Technology, 2023, 162: 109315.
    [12] SUN M Y, JIANG H T, SHI B,et al. Development of FBG salinity sensor coated with lamellar polyimide and experimental study on salinity measurement of gravel aquifer[J].Measurement, 2019, 140: 526-537.doi:10.1016/j.measurement.2019.03.020
    [13] AN G W, LIU L, HU P,et al. Probe type TFBG-excited SPR fiber sensor for simultaneous measurement of multiple ocean parameters assisted by CFBG[J].Optics Express, 2023, 31(3): 4229-4237.doi:10.1364/OE.481948
    [14] YANG F, HLUSHKO R, WU D,et al. Ocean salinity sensing using long-period fiber gratings functionalized with layer-by-layer hydrogels[J].ACS Omega, 2019, 4(1): 2134-2141.doi:10.1021/acsomega.8b02823
    [15] ZHAO SH, DU CH, WANG Q Y,et al. A long period fiber grating seawater salinity sensor based on bend insensitive single mode fiber[J].Optical Fiber Technology, 2023, 77: 103269.doi:10.1016/j.yofte.2023.103269
    [16] LI Q SH, YANG Y, DU Y D,et al. Highly sensitive detection of low-concentration sodium chloride solutions based on polymeric nanofilms coated long period fiber grating[J].Talanta, 2023, 254: 124126.doi:10.1016/j.talanta.2022.124126
    [17] DEL VILLAR I. Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point[J].Optics Express, 2015, 23(7): 8389-8398.doi:10.1364/OE.23.008389
    [18] CHEN J Y, BAI ZH Y, ZHU G X,et al. Femtosecond laser inscribed helical long period fiber grating for exciting orbital angular momentum[J].Optics Express, 2022, 30(3): 4402-4411.doi:10.1364/OE.449619
    [19] 张亚妮, 刘思聪, 赵亚, 等. 800 nm高能量飞秒 脉冲刻写长周期光纤光栅机理[J]. 光子学报,2018,47(1):0106003.doi:10.3788/gzxb20184701.0106003

    ZHANG Y N, LIU S C, ZHAO Y,et al. Fabrication mechanism of long-period fiber grating based on 800 nm high intensity femto-second laser pulses[J].Acta Photonica Sinica, 2018, 47(1): 0106003. (in Chinese).doi:10.3788/gzxb20184701.0106003
    [20] 张亚妮, 郗亚茹, 江鹏, 等. 飞秒 直写长周期光纤光栅及其光谱特性[J]. 光子学报,2018,47(11):1106001.doi:10.3788/gzxb20184711.1106001

    ZHANG Y N, XI Y R, JIANG P,et al. Fabrication of long period fibre gratings by femtosecond laser writing directly and its spectral characteristics[J].Acta Photonica Sinica, 2018, 47(11): 1106001. (in Chinese).doi:10.3788/gzxb20184711.1106001
    [21] ZHANG Y N, JIANG P, QIAO D,et al. Sensing characteristics of long period grating by writing directly in SMF-28 based on 800 nm femtosecond laser pulses[J].Optics & Laser Technology, 2020, 121: 105839.
    [22] ŚMIETANA M, DOMINIK M, MIKULIC P,et al. Temperature and refractive index sensing with Al2O3-nanocoated long-period gratings working at dispersion turning point[J].Optics & Laser Technology, 2018, 107: 268-273.
    [23] DU CH, WANG Q, ZHAO Y,et al. Ultrasensitive long-period gratings sensor works near dispersion turning point and mode transition region by optimally designing a photonic crystal fiber[J].Optics & Laser Technology, 2019, 112: 261-268.
    [24] 朱雨雨, 郗亚茹, 张亚妮, 等. 长周期光纤光栅光谱特性仿真研究[J]. 中国光学,2020,13(3):451-458.

    ZHU Y Y, XI Y R, ZHANG Y N,et al. Numerical simulation of transmission spectra characterization of long-period fiber grating[J].Chinese Optics, 2020, 13(3): 451-458. (in Chinese).
    [25] ZHONG X Y, WANG Y P, LIAO CH R,et al. Long period fiber gratings inscribed with an improved two-dimensional scanning technique[J].IEEE Photonics Journal, 2014, 6(4): 2201508.
    [26] DEL VILLAR I, FUENTES O, CHIAVAIOLI F,et al. Optimized strain long-period fiber grating (LPFG) sensors operating at the dispersion turning point[J].Journal of Lightwave Technology, 2018, 36(11): 2240-2247.doi:10.1109/JLT.2018.2790434
    [27] PEREIRA D A, FRAZAO O, SANTOS J L. Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature[J].Optical Engineering, 2004, 43(2): 299-304.doi:10.1117/1.1637903
    [28] DEL VILLAR I, CRUZ J L, SOCORRO A B,et al. Sensitivity optimization with cladding-etched long period fiber gratings at the dispersion turning point[J].Optics Express, 2016, 24(16): 17680-17685.doi:10.1364/OE.24.017680
    [29] VIVEIROS D, DE ALMEIDA J M M M, COELHO L,et al. Turn around point long period fiber gratings with coupling to asymmetric cladding modes fabricated by a femtosecond laser and coated with titanium dioxide[J].Journal of Lightwave Technology, 2021, 39(14): 4784-4793.doi:10.1109/JLT.2021.3078257
  • 加载中
图(11)/ 表(1)
计量
  • 文章访问数:31
  • HTML全文浏览量:10
  • PDF下载量:8
  • 被引次数:0
出版历程
  • 网络出版日期:2023-11-06

目录

    /

      返回文章
      返回
        Baidu
        map