-
摘要:
为了研制高灵敏海水盐度传感器,本文基于CO2 技术成功制备出一种工作在色散转折点(DTP)附近的长周期光纤光栅(LPFG)。首先,利用CO2 器在80 μm细单模光纤上制备出工作在DTP附近的LPFG,证明了采用CO2 微加工技术制备较短周期LPFG的可能性。其次,通过调控CO2 器的制备周期,使高阶包层模式LP1,9工作在DTP附近,从而显著提高了LPFG的折射率灵敏度。在双峰谐振增敏效应的作用下,当海水盐度从5.001 ‰变化到39.996 ‰时,光栅周期为115.4 μm的双峰谐振LPFG平均灵敏度高达0.279 nm/‰。研究结果表明,本文制备的LPFG海水盐度传感器具有谐振损耗大和灵敏度高的优点,其在海水盐度监测领域具有较好的应用前景。
Abstract:To develop a highly sensitive seawater salinity sensor, a long period fiber grating (LPFG) was successfully fabricated using CO2laser technology to function in close proximity to the dispersion turning point (DTP). An LPFG operating near DTP was fabricated in an 80 μm single mode fiber using CO2laser micromachining technology. This successful endeavor demonstrates the feasibility of developing LPFG with shorter grating period. LPFGs with varying periods were fabricated using a CO2laser to ensure that the cladding mode LP1,9was operating near DTP, resulting in higher refractive index sensitivity of LPFG. The average sensitivity of 0.279 nm/‰ can be achieved in the seawater with salinity ranging from 5.001 ‰ to 39.996 ‰, especially with the dual peak resonance LPFG at a period of 115.4 μm, thanks to the dual peak resonance effect. The dual peaks resonance LPFG seawater salinity sensor exhibits high sensitivity and a large attenuation loss, suggesting potential application in seawater salinity monitoring.
-
表 1不同方法制备的海水盐度传感器灵敏度对比
Table 1.Comparison of sensitivity for seawater salinity sensors fabricated using different methods
制备过程 包层直径 (μm) 灵敏度 范围 参考文献 理论工作:
1. 减小包层直径29.24 3750 nm/RIU 1.33~1.35 [17] 理论工作:
1. 减小包层直径
2. 涂覆高折射率薄膜34.8 143000 nm/RIU 1.33~1.331 1. CO2 刻写
2. 涂覆水凝胶薄膜125 0.1255 nm/‰ 22.8~44.7 ‰ [14] 1. CO2 刻写
2. 氢氟酸腐蚀包层
3. 涂覆TiO2薄膜72 0.1633 nm/‰ 5.001~39.996 ‰ [15] 1. 紫外 刻写
2. 氢氟酸腐蚀包层71.75
32.51343 nm/RIU
8734 nm/RIU1.353~1.398 [28] 1. 飞秒 刻写
2. 涂覆TiO2薄膜125 3151.8 nm/RIU 1.33~1.37 [29] 1. CO2 刻写
2. 调整光栅周期80 2025.549 nm/RIU
0.279 nm/‰1.33356~1.33849
5.001~39.996 ‰本项工作 -
[1] SOHAIL T, ZIKA J D, IRVING D B,et al. Observed poleward freshwater transport since 1970[J].Nature, 2022, 602(7898): 617-622.doi:10.1038/s41586-021-04370-w [2] KATSUMATA K, PURKEY S G, COWLEY R,et al. GO-SHIP easy ocean: gridded ship-based hydrographic section of temperature, salinity, and dissolved oxygen[J].Scientific Data, 2022, 9(1): 103.doi:10.1038/s41597-022-01212-w [3] LI Y, WU G F, SONG G,et al. Soft, pressure-tolerant, flexible electronic sensors for sensing under harsh environments[J].ACS Sensors, 2022, 7(8): 2400-2409.doi:10.1021/acssensors.2c01059 [4] DINNAT E P, LE VINE D M, BOUTIN J,et al. Remote sensing of sea surface salinity: comparison of satellite and in situ observations and impact of retrieval parameters[J].Remote Sensing, 2019, 11(7): 750.doi:10.3390/rs11070750 [5] DEMIR O, JOHNSON J T, JEZEK K C,et al. Studies of sea-ice thickness and salinity retrieval using 0.5-2 GHz microwave radiometry[J].IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4304412. [6] QIAN Y, ZHAO Y, WU Q L,et al. Review of salinity measurement technology based on optical fiber sensor[J].Sensors and Actuators B:Chemical, 2018, 260: 86-105.doi:10.1016/j.snb.2017.12.077 [7] QUAN X H, FRY E S. Empirical equation for the index of refraction of seawater[J].Applied Optics, 1995, 34(18): 3477-3480.doi:10.1364/AO.34.003477 [8] ZHENG H K, ZHAO Y, LV R Q,et al. Study on the temperature and salinity sensing characteristics of multifunctional reflective optical fiber probe[J].IEEE Transactions on Instrumentation and Measurement, 2021, 70: 9514308. [9] ZHAO Y, ZHAO J, WANG X X,et al. Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements[J].Sensors and Actuators B:Chemical, 2022, 353: 131134.doi:10.1016/j.snb.2021.131134 [10] ZHANG S Q, PENG Y, WEI X,et al. High-sensitivity biconical optical fiber SPR salinity sensor with a compact size by fiber grinding technique[J].Measurement, 2022, 204: 112156.doi:10.1016/j.measurement.2022.112156 [11] WANG Y, TONG R J, ZHAO K J,et al. Optical fiber sensor based on SPR and MZI for seawater salinity and temperature measurement[J].Optics & Laser Technology, 2023, 162: 109315. [12] SUN M Y, JIANG H T, SHI B,et al. Development of FBG salinity sensor coated with lamellar polyimide and experimental study on salinity measurement of gravel aquifer[J].Measurement, 2019, 140: 526-537.doi:10.1016/j.measurement.2019.03.020 [13] AN G W, LIU L, HU P,et al. Probe type TFBG-excited SPR fiber sensor for simultaneous measurement of multiple ocean parameters assisted by CFBG[J].Optics Express, 2023, 31(3): 4229-4237.doi:10.1364/OE.481948 [14] YANG F, HLUSHKO R, WU D,et al. Ocean salinity sensing using long-period fiber gratings functionalized with layer-by-layer hydrogels[J].ACS Omega, 2019, 4(1): 2134-2141.doi:10.1021/acsomega.8b02823 [15] ZHAO SH, DU CH, WANG Q Y,et al. A long period fiber grating seawater salinity sensor based on bend insensitive single mode fiber[J].Optical Fiber Technology, 2023, 77: 103269.doi:10.1016/j.yofte.2023.103269 [16] LI Q SH, YANG Y, DU Y D,et al. Highly sensitive detection of low-concentration sodium chloride solutions based on polymeric nanofilms coated long period fiber grating[J].Talanta, 2023, 254: 124126.doi:10.1016/j.talanta.2022.124126 [17] DEL VILLAR I. Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point[J].Optics Express, 2015, 23(7): 8389-8398.doi:10.1364/OE.23.008389 [18] CHEN J Y, BAI ZH Y, ZHU G X,et al. Femtosecond laser inscribed helical long period fiber grating for exciting orbital angular momentum[J].Optics Express, 2022, 30(3): 4402-4411.doi:10.1364/OE.449619 [19] 张亚妮, 刘思聪, 赵亚, 等. 800 nm高能量飞秒 脉冲刻写长周期光纤光栅机理[J]. 光子学报,2018,47(1):0106003.doi:10.3788/gzxb20184701.0106003ZHANG Y N, LIU S C, ZHAO Y,et al. Fabrication mechanism of long-period fiber grating based on 800 nm high intensity femto-second laser pulses[J].Acta Photonica Sinica, 2018, 47(1): 0106003. (in Chinese).doi:10.3788/gzxb20184701.0106003 [20] 张亚妮, 郗亚茹, 江鹏, 等. 飞秒 直写长周期光纤光栅及其光谱特性[J]. 光子学报,2018,47(11):1106001.doi:10.3788/gzxb20184711.1106001ZHANG Y N, XI Y R, JIANG P,et al. Fabrication of long period fibre gratings by femtosecond laser writing directly and its spectral characteristics[J].Acta Photonica Sinica, 2018, 47(11): 1106001. (in Chinese).doi:10.3788/gzxb20184711.1106001 [21] ZHANG Y N, JIANG P, QIAO D,et al. Sensing characteristics of long period grating by writing directly in SMF-28 based on 800 nm femtosecond laser pulses[J].Optics & Laser Technology, 2020, 121: 105839. [22] ŚMIETANA M, DOMINIK M, MIKULIC P,et al. Temperature and refractive index sensing with Al2O3-nanocoated long-period gratings working at dispersion turning point[J].Optics & Laser Technology, 2018, 107: 268-273. [23] DU CH, WANG Q, ZHAO Y,et al. Ultrasensitive long-period gratings sensor works near dispersion turning point and mode transition region by optimally designing a photonic crystal fiber[J].Optics & Laser Technology, 2019, 112: 261-268. [24] 朱雨雨, 郗亚茹, 张亚妮, 等. 长周期光纤光栅光谱特性仿真研究[J]. 中国光学,2020,13(3):451-458.ZHU Y Y, XI Y R, ZHANG Y N,et al. Numerical simulation of transmission spectra characterization of long-period fiber grating[J].Chinese Optics, 2020, 13(3): 451-458. (in Chinese). [25] ZHONG X Y, WANG Y P, LIAO CH R,et al. Long period fiber gratings inscribed with an improved two-dimensional scanning technique[J].IEEE Photonics Journal, 2014, 6(4): 2201508. [26] DEL VILLAR I, FUENTES O, CHIAVAIOLI F,et al. Optimized strain long-period fiber grating (LPFG) sensors operating at the dispersion turning point[J].Journal of Lightwave Technology, 2018, 36(11): 2240-2247.doi:10.1109/JLT.2018.2790434 [27] PEREIRA D A, FRAZAO O, SANTOS J L. Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature[J].Optical Engineering, 2004, 43(2): 299-304.doi:10.1117/1.1637903 [28] DEL VILLAR I, CRUZ J L, SOCORRO A B,et al. Sensitivity optimization with cladding-etched long period fiber gratings at the dispersion turning point[J].Optics Express, 2016, 24(16): 17680-17685.doi:10.1364/OE.24.017680 [29] VIVEIROS D, DE ALMEIDA J M M M, COELHO L,et al. Turn around point long period fiber gratings with coupling to asymmetric cladding modes fabricated by a femtosecond laser and coated with titanium dioxide[J].Journal of Lightwave Technology, 2021, 39(14): 4784-4793.doi:10.1109/JLT.2021.3078257