Design of a Highly Sensitive Photoelectric Detection Circuit for TDLAS Gas Laser Telemetry
-
摘要:
针对气体 遥测光信号微弱、环境因素干扰强等特点,结合波长调制技术,设计和研究了用于TDLAS 遥测的高灵敏度光电探测电路(High Sensitivity Photoelectric Detection Circuit, HSPDC)。基于波长调制技术,确定了TDLAS信号噪声抑制方法;采用光电二极管理想模型,分析了光电探测电路线性响应特性并确定了光电二极管的关键参数;基于级联放大原理设计仿真并测试了HSPDC,光功率检测下限0.11 nW,信号衰减仅为0.79 dB(f=10 kHz),截止频率高于现有108 V/A跨阻放大电路一个数量级,可用于高速调制微弱光信号的探测。搭建了气体 遥测系统,当调制频率为3 kHz时, 遥测系统获得了良好的检测性能,检测灵敏度达到88.66 mV/ppm,检测限优于0.565 ppm,线性拟合度R2为0.9996。研究表明,研制的HSPDC光电探测电路具有响应速度快、检测灵敏度和等优点,可集成化,能满足气体 遥测应用需求。
Abstract:To address weak gas laser telemetry optical signals and strong interference from environmental factors, a Highly Sensitive Photoelectric Detection Circuit (HSPDC) for TDLAS laser telemetry has been designed and investigated using wavelength modulation technology. In addition, Furthermore, a noise suppression method for TDLAS signals based on this technology was determined. The photodiode ideal model is utilized to analyze the linear response characteristics of the photodetector circuit and determine the essential photodiode parameters. Based on the cascade amplification principle, the HSPDC is designed, simulated, and tested, achieving a lower limit of optical power detection of 0.11 nW, a signal attenuation of 0.79 dB (f=10 kHz). The cutoff frequency is one order of magnitude higher than the existing 108 V/A cross-impedance amplification circuit. Therefore, HSPDC is applicable for high-speed modulation of weak optical signals. The laser telemetry system exhibits excellent detection performance at a modulation frequency of 3 kHz, with a detection sensitivity of 88.66 mV/ppm, a detection limit of less than 0.565 ppm, and a linear fit R2 of 0.9996. The study demonstrates that the HSPDC photoelectric detection circuit offers the advantages of fast response, high detection sensitivity and accuracy, rendering it ideal for gas laser telemetry applications.
-
Key words:
- photoelectric detection /
- transimpedance amplification /
- TDLAS /
- ppen light path /
- laser telemetry
-
-
[1] YU S F, ZHANG ZH, XIA H Y, et al. Photon-counting distributed free-space spectroscopy[J]. Light:Science & Applications, 2021, 10(1): 212. [2] CHEN S J, TONG B W, RUSSELL L M, et al. Lidar-based daytime boundary layer height variation and impact on the regional satellite-based PM2.5 estimate[J]. Remote Sensing of Environment, 2022, 291: 113224. [3] XIAO D, WANG N CH, CHEN S J, et al. Simultaneous profiling of dust aerosol mass concentration and optical properties with polarized high-spectral-resolution lidar[J]. Science of the Total Environment, 2023, 872: 162091. doi: 10.1016/j.scitotenv.2023.162091 [4] ZHANG K, CHEN Y T, ZHAO H K, et al. Comprehensive, continuous, and vertical measurements of seawater constituents with triple-field-of-view high-spectral-resolution lidar[J]. Research, 2023, 6: 0201. doi: 10.34133/research.0201 [5] WANG N CH, ZHANG K, SHEN X, et al. Dual-field-of-view high-spectral-resolution lidar: Simultaneous profiling of aerosol and water cloud to study aerosol-cloud interaction[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(10): e2110756119. [6] KE J, SUN Y SH, DONG CH ZH, et al. Development of China’s first space-borne aerosol-cloud high-spectral-resolution lidar: retrieval algorithm and airborne demonstration[J]. PhotoniX, 2022, 3: 17. doi: 10.1186/s43074-022-00063-3 [7] WEN L, SUN ZH W, ZHENG Q L et al. On-chip ultrasensitive and rapid hydrogen sensing based on plasmon-induced hot electron–molecule interaction[J]. Light:Science & Applications, 2023, 12: 76. [8] WU L M, YUAN X X, TANG Y X, et al. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices[J]. PhotoniX, 2023, 4(1): 15. doi: 10.1186/s43074-023-00091-7 [9] LEE J, YU E S, KIM T, et al. Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction[J]. PhotoniX, 2023, 4(1): 20. doi: 10.1186/s43074-023-00097-1 [10] ZHANG CH X, LIU CH, HU Q H, et al. Satellite UV-Vis spectroscopy: implications for air quality trends and their driving forces in China during 2005-2017[J]. Light:Science & Applications, 2021, 8: 100. [11] VLK M, DATTA A, ALBERTI S, et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy[J]. Light:Science & Applications, 2021, 10(1): 26. [12] DENG Y, FAN ZH F, ZHAO B B, et al. Mid-infrared hyperchaos of interband cascade lasers[J]. Light:Science & Applications, 2021, 11(1): 7. [13] MARINOV E, MARTINS R J, YOUSSEF M A B, et al. Overcoming the limitations of 3D sensors with wide field of view metasurface-enhanced scanning lidar[J]. Advanced Photonics, 2023, 5(4): 046005. [14] HUANG ZH T, CHANG C Y, CHEN K P, et al. Tunable lasing direction in one-dimensional suspended high-contrast grating using bound states in the continuum[J]. Advanced Photonics, 2022, 4(6): 066004. [15] 张志荣, 夏滑, 孙鹏帅, 等. 基于高灵敏 吸收光谱技术的稳定气态同位素测量及其应用(特邀)[J]. 光子学报,2023,52(3):0352108. doi: 10.3788/gzxb20235203.0352108ZHANG ZH R, XIA H, SUN P SH, et al. Stable gaseous isotope measurement method based on highly sensitive laser absorption spectroscopy and its applications (invited)[J]. Acta Photonica Sinica, 2023, 52(3): 0352108. (in Chinese). doi: 10.3788/gzxb20235203.0352108 [16] 钟笠, 宋迪, 焦月, 等. 具有复杂光谱特征的丙烯气体的TDLAS检测技术研究[J]. 中国光学,2020,13(5):1044-1054. doi: 10.37188/CO.2019-0203ZHONG L, SONG D, JIAO Y, et al. TDLAS detection of propylene with complex spectral features[J]. Chinese Optics, 2020, 13(5): 1044-1054. (in Chinese). doi: 10.37188/CO.2019-0203 [17] 张伟建, 曾祥龙, 杨傲, 等. 纳米金涂覆微纳光纤的倏逝场氨气检测研究[J]. 光电工程,2021,48(9):200451.ZHANG W J, ZENG X L, YANG A, et al. Research on evanescent field ammonia detection with gold-nanosphere coated microfibers[J]. Opto-Electronic Engineering, 2021, 48(9): 200451. (in Chinese). [18] 姚路, 刘文清, 刘建国, 等. 基于TDLAS的长光程环境大气痕量CO监测方法研究[J]. 中国 ,2015,42(2):0215003. doi: 10.3788/CJL201542.0215003YAO L, LIU W Q, LIU J G, et al. Research on open-path detection for atmospheric trace gas CO based on TDLAS[J]. Chinese Journal of Lasers, 2015, 42(2): 0215003. (in Chinese). doi: 10.3788/CJL201542.0215003 [19] XIN F X, LI J, GUO J J, et al. Measurement of atmospheric CO2 column concentrations based on open-path TDLAS[J]. Sensors, 2021, 21(5): 1722. doi: 10.3390/s21051722 [20] REN L, WANG X CH, HUANG G R, et al. Contribution of microchannel plate luminescence to the noise of 20-inch photomultiplier tubes[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1022: 165973. [21] SUZUKI S, NAMEKATA N, TSUJINO K, et al. Highly enhanced avalanche probability using sinusoidally-gated silicon avalanche photodiode[J]. Applied Physics Letters, 2014, 104(4): 041105. doi: 10.1063/1.4861645 [22] 顾宇强, 谭明, 吴渊渊, 等. 具有优化倍增层InAlAs/InGaAs雪崩光电二极管[J]. 红外与毫米波学报,2021,40(6):715-720.GU Y Q, TAN M, WU Y Y, et al. InAlAs/InGaAs avalanche photodiode with an optimized multiplication layer[J]. J. Infrared Millim. Waves, 2021, 40(6): 715-720. (in Chinese). [23] 杨舒涵, 乔顺达, 林殿阳, 等. 基于可调谐半导体 吸收光谱的氧气浓度高灵敏度检测研究[J]. 中国光学(中英文),2023,16(1):151-157. doi: 10.37188/CO.2022-0029YANG SH H, QIAO SH D, LIN D Y, et al. Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy[J]. Chinese Optics, 2023, 16(1): 151-157. (in Chinese). doi: 10.37188/CO.2022-0029 [24] 王彪, 鹿洪飞, 李奥奇, 等. 采用VCSEL 光源的TDLAS甲烷检测系统的研制[J]. 红外与 工程,2020,49(4):0405002. doi: 10.3788/IRLA202049.0405002WANG B, LU H F, LI A Q, et al. Research of TDLAS methane detection system using VCSEL laser as the light source[J]. Infrared and Laser Engineering, 2020, 49(4): 0405002. (in Chinese). doi: 10.3788/IRLA202049.0405002 [25] CIURA Ł, KOLEK A, GAWRON W, et al. Measurements of low frequency noise of infrared photo-detectors with transimpedance detection system[J]. Metrology and Measurement Systems, 2014, 21(3): 461-472. doi: 10.2478/mms-2014-0039 [26] 梁万国, 罗森林, 周思永, 等. 光电探测器的设计[J]. 半导体光电,1998,19(1):52-56. doi: 10.16818/j.issn1001-5868.1998.01.015LIANG W G, LUO S L, ZHOU S Y, et al. Design of photodetector[J]. Semiconductor Optoelectronics, 1998, 19(1): 52-56. (in Chinese). doi: 10.16818/j.issn1001-5868.1998.01.015 [27] Nicodemus F E, Richmond J C, Hsia J J, et al. Geometrical considerations and nomenclature for reflectance[EB/OL]. (1977-01-01).https://www.nist.gov/publications/geometrical-considerations-and-nomenclature-reflectance. (查阅网上资料,文献类型和内容不确定是否正确,请确认) .Nicodemus F E, Richmond J C, Hsia J J, et al. Geometrical considerations and nomenclature for reflectance[EB/OL]. (1977-01-01).https://www.nist.gov/publications/geometrical-considerations-and-nomenclature-reflectance. (查阅网上资料,文献类型和内容不确定是否正确,请确认). [28] 张雷雷, 曹振松, 钟磬, 等. FPGA主控型数字锁相放大器设计及光谱测量[J]. 红外与 工程,2023,52(10):20230023.ZHANG L L, CAO Z S, ZHONG Q, et al. Digital lock-in amplifier controlled by FPGA for spectral measurement[J]. Infrared and Laser Engineering, 2023, 52(10): 20230023.