留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TDLAS气体 遥测高灵敏光电探测电路设计

裴梓伊,胡朋兵,潘孙强,戚海洋,刘素梅,刘东

downloadPDF
裴梓伊, 胡朋兵, 潘孙强, 戚海洋, 刘素梅, 刘东. TDLAS气体 遥测高灵敏光电探测电路设计[J]. . doi: 10.37188/CO.2023-0107
引用本文: 裴梓伊, 胡朋兵, 潘孙强, 戚海洋, 刘素梅, 刘东. TDLAS气体 遥测高灵敏光电探测电路设计[J]. .doi:10.37188/CO.2023-0107
PEI Zi-yi, HU Peng-bing, PAN Sun-qiang, QI Hai-yang, LIU Su-mei, LIU Dong. Design of a Highly Sensitive Photoelectric Detection Circuit for TDLAS Gas Laser Telemetry[J]. Chinese Optics. doi: 10.37188/CO.2023-0107
Citation: PEI Zi-yi, HU Peng-bing, PAN Sun-qiang, QI Hai-yang, LIU Su-mei, LIU Dong. Design of a Highly Sensitive Photoelectric Detection Circuit for TDLAS Gas Laser Telemetry[J].Chinese Optics.doi:10.37188/CO.2023-0107

TDLAS气体 遥测高灵敏光电探测电路设计

doi:10.37188/CO.2023-0107
基金项目:2022 年度“尖兵”“领雁”研发攻关计划项目(2022C03065,2022C03162,2022C03084);浙江省市场监督管理局雏鹰计划 培育项目(CY2023001);浙江省市场监督管理局科研计划项目(QN2023419)
详细信息
    作者简介:

    裴梓伊(1998—),男,辽宁葫芦岛人,硕士研究生在读,2021年于哈尔滨工业大学获得学士学位,主要研究方向为光学检测技术。E-mail:ziyipei@zju.edu.cn

    刘东(1982—),男,辽宁大连人,教授,博士,博士生导师,分别于2005年和2010年在浙江大学获得学士和博士学位,曾在美国宇航局(NASA)从事博士后研究工作。主要研究方向为光学检测、 雷达、机器视觉、深度学习。E-mail:liudongopt@zju.edu.cn

  • 中图分类号:O433.1;O433.4

Design of a Highly Sensitive Photoelectric Detection Circuit for TDLAS Gas Laser Telemetry

Funds:Supported by the“Pioneer” and “Leading Goose” R&D Program of Zhejiang (No. 2022C03065,2022C03162,2022C03084). Science and Technology Plan Program, Eagle Plan Training Program of Marketing Surveillance & Administration Bureau of Zhejiang Province (No. QN2023419, No. CY2023001).
More Information
  • 摘要:

    针对气体 遥测光信号微弱、环境因素干扰强等特点,结合波长调制技术,设计和研究了用于TDLAS 遥测的高灵敏度光电探测电路(High Sensitivity Photoelectric Detection Circuit, HSPDC)。基于波长调制技术,确定了TDLAS信号噪声抑制方法;采用光电二极管理想模型,分析了光电探测电路线性响应特性并确定了光电二极管的关键参数;基于级联放大原理设计仿真并测试了HSPDC,光功率检测下限0.11 nW,信号衰减仅为0.79 dB(f=10 kHz),截止频率高于现有108V/A跨阻放大电路一个数量级,可用于高速调制微弱光信号的探测。搭建了气体 遥测系统,当调制频率为3 kHz时, 遥测系统获得了良好的检测性能,检测灵敏度达到88.66 mV/ppm,检测限优于0.565 ppm,线性拟合度R2为0.9996。研究表明,研制的HSPDC光电探测电路具有响应速度快、检测灵敏度和等优点,可集成化,能满足气体 遥测应用需求。

  • 图 1各次谐波信号(a)奇次谐波信号(b)偶次谐波信号

    Figure 1.Each harmonic signal (a) odd harmonic signal (b) even harmonic signal

    图 2PIN 光电二极管等效模型

    Figure 2.Equivalent model of PIN photodiode

    图 3I—IL响应关系(a)Rd=10 kΩ (b)Rd=100 kΩ (c)Rd=1 MΩ

    Figure 3.I—ILresponse relationship (a)Rd=10 kΩ (b)Rd=100 kΩ (c)Rd=1 MΩ

    图 4光电探测电路原理示意图(a) 跨阻放大电路(b) 负反馈放大电路(c) BW滤波电路

    Figure 4.Schematic diagram of photoelectric detection circuit (a) cross resistance amplification circuit (b) negative feedback amplification circuit (c) BW filtering circuit

    图 5光电探测电路仿真(a) 各级放大电路输出信号(b) 增益及相位频率响应特性

    Figure 5.Photoelectric detection circuit simulation (a) output signal of each stage of amplification circuit (b) gain and phase vs.frequency response characteristic

    图 6氨气 遥测系统结构示意图

    Figure 6.Schematic diagram of ammonia laser telemetry structure

    图 7暗电流噪声信号(a) HSPDC 噪声(b) TLB PDC 噪声

    Figure 7.Dark current noise signal (a) HSPDC noise (b) TLB PDC noise

    图 8遥测距离变化时系统输出信号(a) HSPDC 输出信号(b) TLB PDC 输出信号

    Figure 8.System output signal when telemetry distance changes (a) HSPDC output signal (b) TLB PDC output signal

    图 9二次谐波峰峰值及标准偏差随距离变化曲线

    Figure 9.Curves of the peak value of the second harmonic peak and standard deviation as a function of distance

    图 10二次谐波峰峰值随调制频率影响曲线

    Figure 10.The curve of the peak value of the second harmonic peak as a function of the modulation frequency influence

    图 11系统输出二次谐波波形(a) 气体浓度0.2% (b) 气体浓度1% (c) 气体浓度2%

    Figure 11.System output second harmonic waveform (a) gas concentration 0.2% (b) gas concentration 1% (c) gas concentration

    图 12调制信号 为 1 kHz和 3 kHz时系统浓度响应特性 曲线

    Figure 12.System concentration response characteristic curve when modulation signals are 1 kHz and 3 kHz

  • [1] YU S F, ZHANG ZH, XIA H Y,et al. Photon-counting distributed free-space spectroscopy[J].Light:Science & Applications, 2021, 10(1): 212.
    [2] CHEN S J, TONG B W, RUSSELL L M,et al. Lidar-based daytime boundary layer height variation and impact on the regional satellite-based PM2.5estimate[J].Remote Sensing of Environment, 2022, 291: 113224.
    [3] XIAO D, WANG N CH, CHEN S J,et al. Simultaneous profiling of dust aerosol mass concentration and optical properties with polarized high-spectral-resolution lidar[J].Science of the Total Environment, 2023, 872: 162091.doi:10.1016/j.scitotenv.2023.162091
    [4] ZHANG K, CHEN Y T, ZHAO H K,et al. Comprehensive, continuous, and vertical measurements of seawater constituents with triple-field-of-view high-spectral-resolution lidar[J].Research, 2023, 6: 0201.doi:10.34133/research.0201
    [5] WANG N CH, ZHANG K, SHEN X,et al. Dual-field-of-view high-spectral-resolution lidar: Simultaneous profiling of aerosol and water cloud to study aerosol-cloud interaction[J].Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(10): e2110756119.
    [6] KE J, SUN Y SH, DONG CH ZH,et al. Development of China’s first space-borne aerosol-cloud high-spectral-resolution lidar: retrieval algorithm and airborne demonstration[J].PhotoniX, 2022, 3: 17.doi:10.1186/s43074-022-00063-3
    [7] WEN L, SUN ZH W, ZHENG Q Let al. On-chip ultrasensitive and rapid hydrogen sensing based on plasmon-induced hot electron–molecule interaction[J].Light:Science & Applications, 2023, 12: 76.
    [8] WU L M, YUAN X X, TANG Y X,et al. MXene sensors based on optical and electrical sensing signals: from biological, chemical, and physical sensing to emerging intelligent and bionic devices[J].PhotoniX, 2023, 4(1): 15.doi:10.1186/s43074-023-00091-7
    [9] LEE J, YU E S, KIM T,et al. Naked-eye observation of water-forming reaction on palladium etalon: transduction of gas-matter reaction into light-matter interaction[J].PhotoniX, 2023, 4(1): 20.doi:10.1186/s43074-023-00097-1
    [10] ZHANG CH X, LIU CH, HU Q H,et al. Satellite UV-Vis spectroscopy: implications for air quality trends and their driving forces in China during 2005-2017[J].Light:Science & Applications, 2021, 8: 100.
    [11] VLK M, DATTA A, ALBERTI S,et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy[J].Light:Science & Applications, 2021, 10(1): 26.
    [12] DENG Y, FAN ZH F, ZHAO B B,et al. Mid-infrared hyperchaos of interband cascade lasers[J].Light:Science & Applications, 2021, 11(1): 7.
    [13] MARINOV E, MARTINS R J, YOUSSEF M A B,et al. Overcoming the limitations of 3D sensors with wide field of view metasurface-enhanced scanning lidar[J].Advanced Photonics, 2023, 5(4): 046005.
    [14] HUANG ZH T, CHANG C Y, CHEN K P,et al. Tunable lasing direction in one-dimensional suspended high-contrast grating using bound states in the continuum[J].Advanced Photonics, 2022, 4(6): 066004.
    [15] 张志荣, 夏滑, 孙鹏帅, 等. 基于高灵敏 吸收光谱技术的稳定气态同位素测量及其应用(特邀)[J]. 光子学报,2023,52(3):0352108.doi:10.3788/gzxb20235203.0352108

    ZHANG ZH R, XIA H, SUN P SH,et al. Stable gaseous isotope measurement method based on highly sensitive laser absorption spectroscopy and its applications (invited)[J].Acta Photonica Sinica, 2023, 52(3): 0352108. (in Chinese).doi:10.3788/gzxb20235203.0352108
    [16] 钟笠, 宋迪, 焦月, 等. 具有复杂光谱特征的丙烯气体的TDLAS检测技术研究[J]. 中国光学,2020,13(5):1044-1054.doi:10.37188/CO.2019-0203

    ZHONG L, SONG D, JIAO Y,et al. TDLAS detection of propylene with complex spectral features[J].Chinese Optics, 2020, 13(5): 1044-1054. (in Chinese).doi:10.37188/CO.2019-0203
    [17] 张伟建, 曾祥龙, 杨傲, 等. 纳米金涂覆微纳光纤的倏逝场氨气检测研究[J]. 光电工程,2021,48(9):200451.

    ZHANG W J, ZENG X L, YANG A,et al. Research on evanescent field ammonia detection with gold-nanosphere coated microfibers[J].Opto-Electronic Engineering, 2021, 48(9): 200451. (in Chinese).
    [18] 姚路, 刘文清, 刘建国, 等. 基于TDLAS的长光程环境大气痕量CO监测方法研究[J]. 中国 ,2015,42(2):0215003.doi:10.3788/CJL201542.0215003

    YAO L, LIU W Q, LIU J G,et al. Research on open-path detection for atmospheric trace gas CO based on TDLAS[J].Chinese Journal of Lasers, 2015, 42(2): 0215003. (in Chinese).doi:10.3788/CJL201542.0215003
    [19] XIN F X, LI J, GUO J J,et al. Measurement of atmospheric CO2column concentrations based on open-path TDLAS[J].Sensors, 2021, 21(5): 1722.doi:10.3390/s21051722
    [20] REN L, WANG X CH, HUANG G R,et al. Contribution of microchannel plate luminescence to the noise of 20-inch photomultiplier tubes[J].Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1022: 165973.
    [21] SUZUKI S, NAMEKATA N, TSUJINO K,et al. Highly enhanced avalanche probability using sinusoidally-gated silicon avalanche photodiode[J].Applied Physics Letters, 2014, 104(4): 041105.doi:10.1063/1.4861645
    [22] 顾宇强, 谭明, 吴渊渊, 等. 具有优化倍增层InAlAs/InGaAs雪崩光电二极管[J]. 红外与毫米波学报,2021,40(6):715-720.

    GU Y Q, TAN M, WU Y Y,et al. InAlAs/InGaAs avalanche photodiode with an optimized multiplication layer[J].J. Infrared Millim. Waves, 2021, 40(6): 715-720. (in Chinese).
    [23] 杨舒涵, 乔顺达, 林殿阳, 等. 基于可调谐半导体 吸收光谱的氧气浓度高灵敏度检测研究[J]. 中国光学(中英文),2023,16(1):151-157.doi:10.37188/CO.2022-0029

    YANG SH H, QIAO SH D, LIN D Y,et al. Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy[J].Chinese Optics, 2023, 16(1): 151-157. (in Chinese).doi:10.37188/CO.2022-0029
    [24] 王彪, 鹿洪飞, 李奥奇, 等. 采用VCSEL 光源的TDLAS甲烷检测系统的研制[J]. 红外与 工程,2020,49(4):0405002.doi:10.3788/IRLA202049.0405002

    WANG B, LU H F, LI A Q,et al. Research of TDLAS methane detection system using VCSEL laser as the light source[J].Infrared and Laser Engineering, 2020, 49(4): 0405002. (in Chinese).doi:10.3788/IRLA202049.0405002
    [25] CIURA Ł, KOLEK A, GAWRON W,et al. Measurements of low frequency noise of infrared photo-detectors with transimpedance detection system[J].Metrology and Measurement Systems, 2014, 21(3): 461-472.doi:10.2478/mms-2014-0039
    [26] 梁万国, 罗森林, 周思永, 等. 光电探测器的设计[J]. 半导体光电,1998,19(1):52-56.doi:10.16818/j.issn1001-5868.1998.01.015

    LIANG W G, LUO S L, ZHOU S Y,et al. Design of photodetector[J].Semiconductor Optoelectronics, 1998, 19(1): 52-56. (in Chinese).doi:10.16818/j.issn1001-5868.1998.01.015
    [27] Nicodemus F E, Richmond J C, Hsia J J,et al. Geometrical considerations and nomenclature for reflectance[EB/OL]. (1977-01-01).https://www.nist.gov/publications/geometrical-considerations-and-nomenclature-reflectance.(查阅网上资料,文献类型和内容不确定是否正确,请确认).

    Nicodemus F E, Richmond J C, Hsia J J,et al. Geometrical considerations and nomenclature for reflectance[EB/OL]. (1977-01-01).https://www.nist.gov/publications/geometrical-considerations-and-nomenclature-reflectance.(查阅网上资料,文献类型和内容不确定是否正确,请确认).
    [28] 张雷雷, 曹振松, 钟磬, 等. FPGA主控型数字锁相放大器设计及光谱测量[J]. 红外与 工程,2023,52(10):20230023.

    ZHANG L L, CAO Z S, ZHONG Q,et al. Digital lock-in amplifier controlled by FPGA for spectral measurement[J].Infrared and Laser Engineering, 2023, 52(10): 20230023.
  • 加载中
图(12)
计量
  • 文章访问数:16
  • HTML全文浏览量:2
  • PDF下载量:6
  • 被引次数:0
出版历程
  • 网络出版日期:2023-11-23

目录

    /

      返回文章
      返回
        Baidu
        map